书籍详情
黄启昌论文选集
作者:黄启昌 著
出版社:东北师范大学出版社
出版时间:2006-10-01
ISBN:9787560245836
定价:¥23.00
购买这本书可以去
内容简介
《黄启昌论文选集》收录了他的数学方面的论文。主要内容包括:一类二阶常微分方程组解的全局渐近性态、二阶有限时滞微分方程的Hopf分支及应用、关于无限时滞泛函微分方程解的一致有界性、泛函微分方程分支理论发展概况等。
作者简介
黄启昌,(1931年-2003年),1953年毕业于东北师范大学数学系,毕业后留系任教,先后任助教,讲师,副教授,教授(博士生导师)。他曾任数学系团总支书记,系副主任.系主任,东北师范大学副校长,校长,并担任吉林省人大常务委员,全国政协委员,吉林省数学会常务理事.中国数学会理事,《数学研究与评论》与《微分方程年刊》编委,《东北数学》杂志常务编委。他主持国家自然科学基金重点项目多项,并多次获国家教委科技进步奖。
目录
关于1iénard方程存在极限环的条件
ON LIMIT CYCLES OF EQUATION ON THE EXISTENCE OF PERIODIC SOLUTIONS OF NONLINEAR OSCILLATION EQUATIONS
一类二阶常微分方程组解的全局渐近性态
EXISTENCE OF PERIODIC SOLUTl0NS TO
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH INFINITE DELAY
PERIODIC SOLUTIONS OF PERIODIC
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH INFINITE DELAY
RATE OF DECAY OF SOLUTIONS OF VOLTERRA EQUATIONS
Liapunov Functionals of Conv01ution Type
│·│h模与Volterra积分微分方程的周期解
h有界与具无限时滞的泛函微分方程的周期解
Phase Spaces Cg,Ch,and g-Uniform Boundedness ofFDE(ID)
二阶有限时滞微分方程的Hopf分支及应用
以滞量为参数的向日葵方程的Hopf分支Hopf Bifurcation Analysis of Some Second Order FDEs and Neural Networks with Infinite Delay
STABILITY IN SEVERAL MEASURES AND A
DIFFERENTIAL INEQUALITY FOR A PARTIAL
INTEGRAL EQUATION
关于无限时滞泛函微分方程解的一致有界性Directiorl and Stability of Bifurcating Periodic Solutions
in Predator-Prey Systems with Discrete Delay
泛函微分方程分支理论发展概况
关于具有限时滞Lifnard方程周期解的存在性
LIAPUNOV FUNCTIONALS AND ASYMPTOTIC
STABILITY IN INFINITE DELAY SYSTEMS GLOBAL EXISTENCE OF PERIODIC SOLUTIONS OF LIENARD EQUATIONS WITH FINITE DELAY
RESEARCH ANNOUNCEMENTS HOPF BIFU RCATIONS OF Bi-PARAMETER
ORDINARY DIFFERENTIAL SYSTEMS
ON LIMIT CYCLES OF EQUATION ON THE EXISTENCE OF PERIODIC SOLUTIONS OF NONLINEAR OSCILLATION EQUATIONS
一类二阶常微分方程组解的全局渐近性态
EXISTENCE OF PERIODIC SOLUTl0NS TO
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH INFINITE DELAY
PERIODIC SOLUTIONS OF PERIODIC
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH INFINITE DELAY
RATE OF DECAY OF SOLUTIONS OF VOLTERRA EQUATIONS
Liapunov Functionals of Conv01ution Type
│·│h模与Volterra积分微分方程的周期解
h有界与具无限时滞的泛函微分方程的周期解
Phase Spaces Cg,Ch,and g-Uniform Boundedness ofFDE(ID)
二阶有限时滞微分方程的Hopf分支及应用
以滞量为参数的向日葵方程的Hopf分支Hopf Bifurcation Analysis of Some Second Order FDEs and Neural Networks with Infinite Delay
STABILITY IN SEVERAL MEASURES AND A
DIFFERENTIAL INEQUALITY FOR A PARTIAL
INTEGRAL EQUATION
关于无限时滞泛函微分方程解的一致有界性Directiorl and Stability of Bifurcating Periodic Solutions
in Predator-Prey Systems with Discrete Delay
泛函微分方程分支理论发展概况
关于具有限时滞Lifnard方程周期解的存在性
LIAPUNOV FUNCTIONALS AND ASYMPTOTIC
STABILITY IN INFINITE DELAY SYSTEMS GLOBAL EXISTENCE OF PERIODIC SOLUTIONS OF LIENARD EQUATIONS WITH FINITE DELAY
RESEARCH ANNOUNCEMENTS HOPF BIFU RCATIONS OF Bi-PARAMETER
ORDINARY DIFFERENTIAL SYSTEMS
猜您喜欢