书籍详情
Hadoop实战:涵盖Hadoop的各种最新的技术和系统
作者:陆嘉恒 著
出版社:机械工业出版社
出版时间:2011-10-01
ISBN:9787111359449
定价:¥69.00
购买这本书可以去
内容简介
《Hadoop实战》是一本系统且极具实践指导意义的hadoop工具书和参考书。内容全面,对hadoop整个技术体系进行了全面的讲解,不仅包括hdfs和mapreduce这两大核心内容,而且还包括hive、hbase、mahout、pig、zookeeper、avro、chukwa等与hadoop相关的子项目的内容。实战性强,为各个知识点精心设计了大量经典的小案例,易于理解,可操作性强。全书一共18章:第1章全面介绍了hadoop的概念、优势、项目结构、体系结构,以及它与分布式计算的关系;第2章详细讲解了hadoop集群的安装和配置,以及常用的日志分析技巧;第3章分析了hadoop在yahoo!、ebay、facebook和百度的应用案例,以及hadoop平台上海量数据的排序;第4-7章深入地讲解了mapreduce计算模型、mapreduce应用的开发方法、mapreduce的工作机制,同时还列出了多个mapreduce的应用案例,涉及单词计数、数据去重、排序、单表关联和多表关联等内容;第8-11章全面地阐述了hadoop的i/o操作、hdfs的原理与基本操作,以及hadoop的各种管理操作,如集群的维护等;第12-17章详细而系统地讲解了hive、hbase、mahout、pig、zookeeper、avro、chukwa等所有与hadoop相关的子项目的原理及使用,以及这些子项目与hadoop的整合使用;第18章以实例的方式讲解了常用hadoop插件的使用和hadoop插件的开发。《Hadoop实战》既适合没有hadoop基础的初学者系统地学习,又适合有一定hadoop基础但是缺乏实践经验的读者实践和参考。
作者简介
陆嘉恒,中国人民大学副教授,新加坡国立大学博士,美国加利福尼亚大学尔湾分校(University of California, Irvine) 博士后。专注于云计算及其相关技术的研究,对Hadoop有较深入的研究,积累了丰富的实践经验。对分布式计算和海量数据处理有深刻的认识,主持并完成了多个国家863和自然科学基金项目的研究与实施。2009年入选新世纪优秀人才,2010年入选北京科技新星。主持《云计算概论》课程获教育部-IBM精品课程称号。
目录
前言
第1章 Hadoop简介
1.1 什么是Hadoop
1.1.1 Hadoop概述
1.1.2 Hadoop的历史
1.1.3 Hadoop的功能与作用
1.1.4 Hadoop的优势
1.1.5 Hadoop的应用现状和发展趋势
1.2 Hadoop项目及其结构
1.3 Hadoop的体系结构
1.3.1 HDFS的体系结构
1.3.2 MapReduce的体系结构
1.4 Hadoop与分布式开发
1.5 Hadoop计算模型——MaDRcduce
1.6 Hadoop的数据管理
1.6.1 HDFS的数据管理
1.6.2 HBase的数据管理
1.6.3 Hive的数据管理
1.7 小结
第2章 Hadoop的安装与配置
2.1 在Linux上安装与配置Hadoop
2.1.1 安装JDK 1.6
2.1.2 配置SSH免密码登录
2.1.3安装并运行Hadoop
2.2 在Windows上安装与配置Hadoop
2.2.1 安装Cygwi~
2.2.2 配置环境变量
2.2.3 安装和启动sshd服务
2.2.4 配置SSH免密码登录
2.3 安装和配置Hadoop集群
2.3.1 网络拓扑
2.3.2 定义集群拓扑
2.3.3 建立和安装Cluster
2.4 日志分析及几个小技巧
2.5 小结
第3章 Hadoop应用案例分析
3.1 Hadoop在Yahoo!的应用
3.2 Hadoop在eBay的应用
3.3 Hadoop在百度的应用
3.4 Hadoop在Facebook的应用
3.5 Hadoop平台上的海量数据排序
3.6 小结
第4章 MapReduce计算模型
第5章 开发MapReduce应用程序
第6章 MapReduce应用案例
第7章 MapReduce工作机制
第8章 HadoopI/O
第9章 HDFS详解
第10章 Hadoop的管理
第11章 Hive详解
第12章 HBase详解
第13章 Mahout详解
第14章 Pig详解
第15章 ZooKeepet详解
第16章 Avro详解
第17章 Chukwa详解
第18章 Hadoop的常用插件与开发
附录A 云计算在线检测平台
第1章 Hadoop简介
1.1 什么是Hadoop
1.1.1 Hadoop概述
1.1.2 Hadoop的历史
1.1.3 Hadoop的功能与作用
1.1.4 Hadoop的优势
1.1.5 Hadoop的应用现状和发展趋势
1.2 Hadoop项目及其结构
1.3 Hadoop的体系结构
1.3.1 HDFS的体系结构
1.3.2 MapReduce的体系结构
1.4 Hadoop与分布式开发
1.5 Hadoop计算模型——MaDRcduce
1.6 Hadoop的数据管理
1.6.1 HDFS的数据管理
1.6.2 HBase的数据管理
1.6.3 Hive的数据管理
1.7 小结
第2章 Hadoop的安装与配置
2.1 在Linux上安装与配置Hadoop
2.1.1 安装JDK 1.6
2.1.2 配置SSH免密码登录
2.1.3安装并运行Hadoop
2.2 在Windows上安装与配置Hadoop
2.2.1 安装Cygwi~
2.2.2 配置环境变量
2.2.3 安装和启动sshd服务
2.2.4 配置SSH免密码登录
2.3 安装和配置Hadoop集群
2.3.1 网络拓扑
2.3.2 定义集群拓扑
2.3.3 建立和安装Cluster
2.4 日志分析及几个小技巧
2.5 小结
第3章 Hadoop应用案例分析
3.1 Hadoop在Yahoo!的应用
3.2 Hadoop在eBay的应用
3.3 Hadoop在百度的应用
3.4 Hadoop在Facebook的应用
3.5 Hadoop平台上的海量数据排序
3.6 小结
第4章 MapReduce计算模型
第5章 开发MapReduce应用程序
第6章 MapReduce应用案例
第7章 MapReduce工作机制
第8章 HadoopI/O
第9章 HDFS详解
第10章 Hadoop的管理
第11章 Hive详解
第12章 HBase详解
第13章 Mahout详解
第14章 Pig详解
第15章 ZooKeepet详解
第16章 Avro详解
第17章 Chukwa详解
第18章 Hadoop的常用插件与开发
附录A 云计算在线检测平台
猜您喜欢