书籍详情
计算物理简明教程(英文版)
作者:张海燕 编著
出版社:上海交通大学出版社
出版时间:2010-08-01
ISBN:9787313066688
定价:¥29.00
购买这本书可以去
内容简介
《计算物理简明教程》介绍了“计算物理”学科中的几种基本常用方法,具体内容包括:误差分析、有限差分和内插法、数值积分方法、矩阵算法、常微分方程差分解法、偏微分方程解法、蒙特卡罗模拟方法等。《计算物理简明教程》可供物理专业的本科生作为“计算物理”课程教材使用,也可供从事数值计算的相关专业的研究生参考。
作者简介
暂缺《计算物理简明教程(英文版)》作者简介
目录
1 Approximations, Errors and the Taylor Series
1.1 Approximations and Errors
1.1.1 Approximations
1.1.2 Round-off Errors
1.1.3 Principles to Hold During the Numerical Calculations
1.2 Truncation Errors and the Taylor Series
1.2.1 Truncation Errors
1.2.2 The Taylor Series
1.2.3 Some Techniques in Numerical Computation
1.3 Control of Total Numerical Error
1.3.1 Truncation Error
1.3.2 Total Numerical Error
1.3.3 Control of Numerical Errors
1.4 Problems for Chapter 1
1.5 Computer Work for Chapter 1
2 Interpolation and Finite Differences
2.1 Finite Difference
2.2 Newton Interpolation
2.2.1 Basis Functions
2.2.2 Newton Interpolation
2.2.3 Newton's Divided-difference Interpolating Polynomial
2.2.4 Errors of Newton Interpolation
2.3 Interpolation Formulae
2.3.1 NGF Interpolation
2.3.2 NGB Interpolation
2.3.3 ST Interpolation
2.4 Difference Quotients
2.4.1 DNGF Formulae
2.4.2 DNGB Formulae
2.4.3 DST Formulae
2.5 Problems for Chapter 2
2.6 Computer Work for Chapter 2
3 Numerical Integration
3.1 Numerical Integration Methods
3.2 Newton-Cotes Quadrature Rules
3.2.1 The Trapezoid Rule
3.2.2 Simpson's Rule
3.2.3 Error Estimation
3.3 Composite and Adaptive Quadrature
3.3.1 Composite Quadrature Rules
3.3.2 Automatic and Adaptive Quadrature
3.4 Numerical Integration of Multi-dimensional Integrals
3.5 Problems for Chapter 3
3.6 Computer Work for Chapter 3
4 Matrix Algebra
4.1 Types of Matrices
4.2 Gauss Elimination and Back Substitution
4.2.1 The Elimination of Unknowns
4.2.2 The Algorithm of Gauss Elimination and Back Substitution
4.2.3 Techniques for Improving Solutions
4.3 LU Decomposition and Matrix Inversion
4.3.1 Overview of LU Decomposition
4.3.2 LU Decomposition Algorithm
4.3.3 Procedure from Gauss Elimination
4.3.4 The Matrix Inverse and Error Analysis
4.4 Tridiagonal Matrices and Recursion Method
4.4.1 Tri-diagonal Systems
4.4.2 Recursion Method
4.5 Iterative Methods
4.6 Jacobi Method
4.6.1 The Algorithm
4.6.2 The Convergency
4.7 Gauss-Seidel Method(GS)
4.7.1 The Algorithm
4.7.2 The Convergency
4.8 Successive Over-Relaxation Method(SOR)
4.9 Conjugate Gradient Method(CG)
4.9.1 The Gradient
4.9.2 Steepest Descent Method
4.9.3 CG Method
4.10 Problems for Chapter 4
4.11 Computer Work for Chapter 4
5 Ordinary Differential Equations
5.1 Types of Differential Equations
5.2 Euler Method
5.2.1 Error Analysis
5.2.2 Stability
5.2.3 Application to Vector Equations
5.3 The Leapfrog Methods
5.3.1 Stability Analysis
5.3.2 GeneraliZation to Multi-step Scheme
5.4 Implicit Methods
5.4.1 The Most Fundamental Scheme
5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
5.5 The Runge-Kutta Method
5.5.1 The Basic Idea of Runge-Kutta Method
5.5.2 Stability Analysis
5.5.3 Adaptive RK Method
5.6 Predictor-Corrector(PC) Method
5.7 Boundary Value Problems and Initial Value Problems of Second Order
5.7.1 Shooting Method
5.7.2 Numerov's Method
5.8 Problems for Chapter 5
5.9 Computer Work for Chapter 5
6 Partial Differential Equations
6.1 Types of Equations
6.2 Elliptic Equations
6.2.1 Two or More Dimensions
6.2.2 ADI (alternating direction implicit) Method
6.3 Hyperbolic Equations
6.3.1 The FTCS Scheme
6.3.2 The Lax Scheme
6.3.3 Leapfrog Scheme
6.4 Parabolic Equations
6.4.1 A Simple Method -- FTCS Scheme
6.4.2 Implicit Scheme of First Order
6.4.3 Crank-Nicholson (CN) Scheme
6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
6.6 Problems for Chapter 6
6.7 Computer Work for Chapter 6
7 Monte Carlo Methods and Simulation
7.1 Probability
7.1.1 Chance and Probability
7.1.2 A One-dimensional Random Walk
7.1.3 Probability Distribution
7.1.4 Random Variables
7.2 Random Number Generators
7.2.1 Linear Gongruential Generators
7.2.2 Shift Register Generators
7.3 Non-uniform Probability Distribution
7.3.1 Inverse Transform Method
7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
7.4 Monte Carlo Integration
7.4.1 Splash Method (Hit or Miss Method)
7.4.2 Sample Mean Method
7.4.3 Two Theorems in Probability Theory
7.4.4 MC Error Analysis
7.4.5 Importanee Sampling Technique
7.5 Stoehastie Dynamics
7.5.1 Random Sequences
7.5.2 Stoehastie Dynamics
7.6 Monte Carlo Simulation and Ising Model
7.6.1 Simulation Methods
7.6.2 Random Walk Methods
7.6.3 The Ising Model
7.6.4 The Metropolis Algorithm
7.7 Problems for Chapter 7
7.8 Computer Work for Chapter 7
Bibliography
1.1 Approximations and Errors
1.1.1 Approximations
1.1.2 Round-off Errors
1.1.3 Principles to Hold During the Numerical Calculations
1.2 Truncation Errors and the Taylor Series
1.2.1 Truncation Errors
1.2.2 The Taylor Series
1.2.3 Some Techniques in Numerical Computation
1.3 Control of Total Numerical Error
1.3.1 Truncation Error
1.3.2 Total Numerical Error
1.3.3 Control of Numerical Errors
1.4 Problems for Chapter 1
1.5 Computer Work for Chapter 1
2 Interpolation and Finite Differences
2.1 Finite Difference
2.2 Newton Interpolation
2.2.1 Basis Functions
2.2.2 Newton Interpolation
2.2.3 Newton's Divided-difference Interpolating Polynomial
2.2.4 Errors of Newton Interpolation
2.3 Interpolation Formulae
2.3.1 NGF Interpolation
2.3.2 NGB Interpolation
2.3.3 ST Interpolation
2.4 Difference Quotients
2.4.1 DNGF Formulae
2.4.2 DNGB Formulae
2.4.3 DST Formulae
2.5 Problems for Chapter 2
2.6 Computer Work for Chapter 2
3 Numerical Integration
3.1 Numerical Integration Methods
3.2 Newton-Cotes Quadrature Rules
3.2.1 The Trapezoid Rule
3.2.2 Simpson's Rule
3.2.3 Error Estimation
3.3 Composite and Adaptive Quadrature
3.3.1 Composite Quadrature Rules
3.3.2 Automatic and Adaptive Quadrature
3.4 Numerical Integration of Multi-dimensional Integrals
3.5 Problems for Chapter 3
3.6 Computer Work for Chapter 3
4 Matrix Algebra
4.1 Types of Matrices
4.2 Gauss Elimination and Back Substitution
4.2.1 The Elimination of Unknowns
4.2.2 The Algorithm of Gauss Elimination and Back Substitution
4.2.3 Techniques for Improving Solutions
4.3 LU Decomposition and Matrix Inversion
4.3.1 Overview of LU Decomposition
4.3.2 LU Decomposition Algorithm
4.3.3 Procedure from Gauss Elimination
4.3.4 The Matrix Inverse and Error Analysis
4.4 Tridiagonal Matrices and Recursion Method
4.4.1 Tri-diagonal Systems
4.4.2 Recursion Method
4.5 Iterative Methods
4.6 Jacobi Method
4.6.1 The Algorithm
4.6.2 The Convergency
4.7 Gauss-Seidel Method(GS)
4.7.1 The Algorithm
4.7.2 The Convergency
4.8 Successive Over-Relaxation Method(SOR)
4.9 Conjugate Gradient Method(CG)
4.9.1 The Gradient
4.9.2 Steepest Descent Method
4.9.3 CG Method
4.10 Problems for Chapter 4
4.11 Computer Work for Chapter 4
5 Ordinary Differential Equations
5.1 Types of Differential Equations
5.2 Euler Method
5.2.1 Error Analysis
5.2.2 Stability
5.2.3 Application to Vector Equations
5.3 The Leapfrog Methods
5.3.1 Stability Analysis
5.3.2 GeneraliZation to Multi-step Scheme
5.4 Implicit Methods
5.4.1 The Most Fundamental Scheme
5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
5.5 The Runge-Kutta Method
5.5.1 The Basic Idea of Runge-Kutta Method
5.5.2 Stability Analysis
5.5.3 Adaptive RK Method
5.6 Predictor-Corrector(PC) Method
5.7 Boundary Value Problems and Initial Value Problems of Second Order
5.7.1 Shooting Method
5.7.2 Numerov's Method
5.8 Problems for Chapter 5
5.9 Computer Work for Chapter 5
6 Partial Differential Equations
6.1 Types of Equations
6.2 Elliptic Equations
6.2.1 Two or More Dimensions
6.2.2 ADI (alternating direction implicit) Method
6.3 Hyperbolic Equations
6.3.1 The FTCS Scheme
6.3.2 The Lax Scheme
6.3.3 Leapfrog Scheme
6.4 Parabolic Equations
6.4.1 A Simple Method -- FTCS Scheme
6.4.2 Implicit Scheme of First Order
6.4.3 Crank-Nicholson (CN) Scheme
6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
6.6 Problems for Chapter 6
6.7 Computer Work for Chapter 6
7 Monte Carlo Methods and Simulation
7.1 Probability
7.1.1 Chance and Probability
7.1.2 A One-dimensional Random Walk
7.1.3 Probability Distribution
7.1.4 Random Variables
7.2 Random Number Generators
7.2.1 Linear Gongruential Generators
7.2.2 Shift Register Generators
7.3 Non-uniform Probability Distribution
7.3.1 Inverse Transform Method
7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
7.4 Monte Carlo Integration
7.4.1 Splash Method (Hit or Miss Method)
7.4.2 Sample Mean Method
7.4.3 Two Theorems in Probability Theory
7.4.4 MC Error Analysis
7.4.5 Importanee Sampling Technique
7.5 Stoehastie Dynamics
7.5.1 Random Sequences
7.5.2 Stoehastie Dynamics
7.6 Monte Carlo Simulation and Ising Model
7.6.1 Simulation Methods
7.6.2 Random Walk Methods
7.6.3 The Ising Model
7.6.4 The Metropolis Algorithm
7.7 Problems for Chapter 7
7.8 Computer Work for Chapter 7
Bibliography
猜您喜欢