书籍详情

非线性泛函分析及其应用·第2B卷:非线性单调算子

非线性泛函分析及其应用·第2B卷:非线性单调算子

作者:(德)宰德勒 著

出版社:世界图书出版公司

出版时间:2009-08-01

ISBN:9787510005213

定价:¥89.00

购买这本书可以去
内容简介
  这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(如庞特里亚金极大值原理)、统计优化、博弈论、参数识别、逼近论的应用;讲了凸优化理论及应用;讲了极值的各种近似计算方法。比如第4卷,讲物理应用,写作原理是:由物理事实到数学模型;由数学模型到数学结果;再由数学结果到数学结果的物理解释;最后再回到物理事实。再次,该书由浅入深地讲透了基本理论的发展历程及走向,它既讲清楚了所涉及学科的具体问题,也讲清楚了其背后的数学原理及其作用。数学理论讲得也非常深入,例如,不动点理论,就从Banach不动点定理讲到Schauder不动点定理,以及Bourbaki—Kneser不动点定理等等。这套书的写作起点很低,具备本科数学水平就可以读;应用都是从最简单情形入手,应用领域的读者也可以读;全书材料自足,各部分又尽可能保持独立;书后附有极其丰富的参考文献及一些文献评述;该书文字优美,引用了许多大师的格言,读之你会深受启发。这套书的优点不胜枚举,每个与数理学科相关的人,搞理论的,搞应用的,搞研究的,搞教学的,都可读该书,哪怕只是翻一翻,都不会空手而返!
作者简介
暂缺《非线性泛函分析及其应用·第2B卷:非线性单调算子》作者简介
目录
Preface to Part II/B
GENERALIZATION TO NONLINEAR STATIONARY PROBLEMS
Basic Ideas of the Theory of Monotone Operators
CHAPTER 25 Lipschitz Continuous, Strongly Monotone Operators, the Projection-lteration Method, and Monotone Potential Operators
25.1.Sequences of k-Contractive Operators
25.2.The Projection Iteration Method for k-Contractive Operators
25.3.Monotone Operators
25.4.The Main Theorem on Strongly Monotone Operators, and the Projection-Iteration Method
25.5.Monotone and Pseudomonotone Operators, and the Calculus of Variations
25.6.The Main Theorem on Monotone Potential Operators
25.7.The Main Theorem on Pseudomonotone Potential Operators
25.8.Application to the Main Theorem on Quadratic Variational Inequalities
25.9.Application to Nonlinear Stationary Conservation Laws
25.10.Projection Iteration Method for Conservation Laws
25.11.The Main Theorem on Nonlinear Stationary Conservation Laws
25.12.Duality Theory for Conservation Laws and Two-sided a posterior.i Error Estimates for the Ritz Method
25.13.The Kacanov Method for Stationary Conservation Laws
25.14.The Abstract Kacanov Method for Variational Inequalities
CHAPTER 26 Monotone Operators and Quasi-Linear Elliptic Differential Equations
26.1.Hemicontinuity and Demicontinuity
26.2.The Main Theorem on Monotone Operators
26.3.The Nemyckii Operator
26.4.Generalized Gradient Method for the Solution of the Galerkin Equations
26.5.Application to Quasi-Linear Elliptic Differential Equations of Order 2m
26.6.Proper Monotone Operators and Proper Quasi-Linear Elliptic Differential Operators
CHAPTER 27 Pseudomonotone Operators and Quasi-Linear Elliptic Differential Equations
27.1.The Conditions (M) and (S), and the Convergence of the Galerkin Method
27.2.Pseudomonotone Operators
27.3.The Main Theorem on Pseudomonotone Operators
27.4.Application to Quasi-Linear Elliptic Differential Equations
27.5.Relations Between Important Properties of Nonlinear Operators
27.6.Dual Pairs of B-Spaces
27.7.The Main Theorem on Locally Coercive Operators
27.8.Application to Strongly Nonlinear Differential Equations
CHAPTER 28 Monotone Operators and Hammerstein Integral Equations
28.1.A Factorization Theorem for Angle-Bounded Operators
28.2.Abstract Hammerstein Equations with Angle-Bounded Kernel Operators
28.3.Abstract Hammerstein Equations with Compact Kernel Operators
28.4.Application to Hammerstein Integral Equations
28.5.Application to Semilinear Elliptic Differential Equations
CHAPTER 29 Noncoercive Equations, Nonlinear Fredholm Alternatives,Locally Monotone Operators, Stability, and Bifurcation
29.1.Pseudoresolvent, Equivalent Coincidence Problems, and the Coincidence Degree
29.2.Fredholm Alternatives for Asymptotically Linear, Compact Perturbations of the Identity
29.3.Application to Nonlinear Systems of Real Equations
29.4.Application to Integral Equations
29.5.Application to Differential Equations
29.6.The Generalized Antipodal Theorem
29.7.Fredholm Alternatives for Asymptotically Linear (S)-Operators
29.8.Weak Asymptotes and Fredholm Alternatives
……
GENERALIZATION TO NONLINEAR NONSTATIONARY PROBLEMS
GENERAL THEORY OF DISCRETIZATION METHODS
Appendix
References
List of Symbols
List of Theorems
List of the Most Important Definitions
List of Schematic Overviews
List of Important Principles
Index
猜您喜欢

读书导航