书籍详情

模式识别与神经网络(英文版)

模式识别与神经网络(英文版)

作者:(英)里普利 著

出版社:人民邮电出版社

出版时间:2009-08-01

ISBN:9787115210647

定价:¥69.00

购买这本书可以去
内容简介
  《模式识别与神经网络(英文版)》是模式识别和神经网络方面的名著,讲述了模式识别所涉及的统计方法、神经网络和机器学习等分支。书的内容从介绍和例子开始,主要涵盖统计决策理论、线性判别分析、弹性判别分析、前馈神经网络、非参数方法、树结构分类、信念网、无监管方法、探寻优良的模式特性等方面的内容。《模式识别与神经网络(英文版)》可作为统计与理工科研究生课程的教材,对模式识别和神经网络领域的研究人员也是极有价值的参考书。
作者简介
  里普利(B.D.Ripley)著名的统计学家,牛津大学应用统计教授。他在空间统计学、模式识别领域作出了重要贡献,对S的开发以及S-PLUSUS和R的推广应用有着重要影响。20世纪90年代他出版了人工神经网络方面的著作,影响很大,引导统计学者开始关注机器学习和数据挖掘。除本书外,他还著有Modern Applied Statistics with S和S Programming。
目录
1 Introduction and Examples1
1.1 How do neural methods differ?4
1.2 The patterm recognition task5
1.3 Overview of the remaining chapters9
1.4 Examples10
1.5 Literature15
2 Statistical Decision Theory17
2.1 Bayes rules for known distributions18
2.2 Parametric models26
2.3 Logistic discrimination43
2.4 Predictive classification45
2.5Alternative estimation procedures55
2.6 How complex a model do we need?59
2.7 Performance assessment66
2.8 Computational learning approaches77
3 Linear DiscriminantAnalysis91
3.1 Classical linear discriminatio92
3.2 Linear discriminants via regression101
3.3 Robustness105
3.4 Shrinkage methods106
3.5 Logistic discrimination109
3.6 Linear separatio andperceptrons116
4 Flexible Diseriminants121
4.1 Fitting smooth parametric functions122
4.2 Radial basis functions131
4.3 Regularization136
5 Feed-forward Neural Networks143
5.1 Biological motivation145
5.2 Theory147
5.3 Learning algorithms148
5.4 Examples160
5.5 Bayesian perspectives163
5.6 Network complexity168
5.7Approximation results173
6 Non-parametric Methods181
6.1 Non-parametric estlmation of class densities181
6.2 Nearest neighbour methods191
6 3 Learning vector quantization201
6.4 Mixture representations207
7 Tree-structured Classifiers213
7.1 Splitting rules216
7.2 Pruning rules221
7.3 Missing values231
7.4 Earlier approaches235
7.5 Refinements237
7.6 Relationships to neural networks240
7.7 Bayesian trees241
8 Belief Networks243
8.1 Graphical models and networks246
8.2 Causal networks262
8 3 Learning the network structure275
8.4 Boltzmann machines279
8.5 Hierarchical mixtures of experts283
9 Unsupervised Methods287
9.1 Projection methods288
9.2 Multidimensional scaling305
9.3 Clustering algorithms311
9.4 Self-organizing maps322
10 Finding Good Pattern Features327
10.1 Bounds for the Bayes error328
10.2 Normal class distributions329
10.3 Branch-and-bound techniques330
10.4 Feature extraction331
A Statistical Sidelines333
A.1 Maximum likelihood and MAP estimation333
A.2 TheEMalgorithm334
A.3 Markov chain Monte Carlo337
A.4Axioms for dconditional indcpcndence339
A.5 Oprimization342
Glossary347
References355
Author Index391
Subject Index399
猜您喜欢

读书导航