书籍详情
统计推断原理(英文版)
作者:(英)考克斯 著
出版社:人民邮电出版社
出版时间:2009-08-01
ISBN:9787115210746
定价:¥49.00
购买这本书可以去
内容简介
《统计推断原理(英文版)》是统计学名家名作,包含9章内容和两个附录,前面几章介绍一些基本概念,如参数、似然、主元等,然后介绍显著性检验、渐进理论以及比较复杂的统计推断问题。还特别介绍了实验设计中基于随机化的统计推断。核心概念的解释非常清晰,即使跳过其中的数学细节,也能使读者理解。《统计推断原理(英文版)》可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
作者简介
D.R.Cox,世界著名统计学家,英国皇家学会会员暨英国社会科学院院士,美国科学院、丹麦皇家科学院外籍院士。曾任国际统计协会、伯努利数理统汁与概率学会、英国皇家统计学会主席。主要学术贡献包括Cox过程和影响深远且应用广泛的Cox比例风险模型等。
目录
1 Preliminaries
Summary
1.1 Starting point
1.2 Role of formal theory of inference
1.3 Some simple models
1.4 Formulation of objectives
1.5 Two broad approaches to statistical inference
1.6 Some further discussion
1.7 Parameters
Notes 1
2 Some concepts and simple applications
Summary
2.1 Likelihood
2.2 Sufficiency
2.3 Exponential family
2.4 Choice of priors for exponential family problems
2.5 Simple frequentist discussion
2.6 Pivots
Notes 2
3 Significance tests
Summary
3.1 General remarks
3.2 Simple significance test
3.3 One- and two-sided tests
3.4 Relation with acceptance and rejection
3.5 Formulation of alternatives and test statistics
3.6 Relation with interval estimation
3.7 Interpretation of significance tests
3.8 Bayesian testing
Notes 3
4 More complicated situations
Summary
4.1 General remarks
4.2 General Bayesian formulation
4.3 Frequentist analysis
4.4 Some more general frequentist developments
4.5 Some further Bayesian examples
Notes 4
5 Interpretations of uncertainty
Summary
5.1 General remarks
5.2 Broad roles of probability
5.3 Frequentist interpretation of upper limits
5.4 Neyman-Pearson operational criteria
5.5 Some general aspects of the frequentist approach
5.6 Yet more on the frequentist approach
5.7 Personalistic probability
5.8 Impersonal degree of belief
5.9 Reference priors
5.10 Temporal coherency
5.11 Degree of belief and frequency
5.12 Statistical implementation of Bayesian analysis
5.13 Model uncertainty
5.14 Consistency of data and prior
5.15 Relevance of frequentist assessment
5.16 Sequential stopping
5.17 A simple classification problem
Notes 5
6 Asymptotic theory
Summary
6.1 General remarks
6.2 Scalar parameter
6.3 Multidimensional parameter
6.4 Nuisance parameters
6.5 Tests and model reduction
6.6 Comparative discussion
6.7 Profile likelihood as an information summarizer
6.8 Constrained estimation
6.9 Semi-asymptotic arguments
6.10 Numerical-analytic aspects
6.11 Higher-order asymptotics
Notes 6
7 Further aspects of maximum likelihood
Summary
7.1 Multimodal likelihoods
7.2 Irregular form
7.3 Singular information matrix
7.4 Failure of model
7.5 Unusual parameter space
7.6 Modified likelihoods
Notes 7
8 Additional objectives
Summary
8.1 Prediction
8.2 Decision analysis
8.3 Point estimation
8.4 Non-likelihood-based methods
Notes 8
9 Randomization-based analysis
Summary
9.1 General remarks
9.2 Sampling a finite population
9.3 Design of experiments
Notes 9
Appendix A: A brief history
Appendix B: A personal view
References
Author index
Subject index
Summary
1.1 Starting point
1.2 Role of formal theory of inference
1.3 Some simple models
1.4 Formulation of objectives
1.5 Two broad approaches to statistical inference
1.6 Some further discussion
1.7 Parameters
Notes 1
2 Some concepts and simple applications
Summary
2.1 Likelihood
2.2 Sufficiency
2.3 Exponential family
2.4 Choice of priors for exponential family problems
2.5 Simple frequentist discussion
2.6 Pivots
Notes 2
3 Significance tests
Summary
3.1 General remarks
3.2 Simple significance test
3.3 One- and two-sided tests
3.4 Relation with acceptance and rejection
3.5 Formulation of alternatives and test statistics
3.6 Relation with interval estimation
3.7 Interpretation of significance tests
3.8 Bayesian testing
Notes 3
4 More complicated situations
Summary
4.1 General remarks
4.2 General Bayesian formulation
4.3 Frequentist analysis
4.4 Some more general frequentist developments
4.5 Some further Bayesian examples
Notes 4
5 Interpretations of uncertainty
Summary
5.1 General remarks
5.2 Broad roles of probability
5.3 Frequentist interpretation of upper limits
5.4 Neyman-Pearson operational criteria
5.5 Some general aspects of the frequentist approach
5.6 Yet more on the frequentist approach
5.7 Personalistic probability
5.8 Impersonal degree of belief
5.9 Reference priors
5.10 Temporal coherency
5.11 Degree of belief and frequency
5.12 Statistical implementation of Bayesian analysis
5.13 Model uncertainty
5.14 Consistency of data and prior
5.15 Relevance of frequentist assessment
5.16 Sequential stopping
5.17 A simple classification problem
Notes 5
6 Asymptotic theory
Summary
6.1 General remarks
6.2 Scalar parameter
6.3 Multidimensional parameter
6.4 Nuisance parameters
6.5 Tests and model reduction
6.6 Comparative discussion
6.7 Profile likelihood as an information summarizer
6.8 Constrained estimation
6.9 Semi-asymptotic arguments
6.10 Numerical-analytic aspects
6.11 Higher-order asymptotics
Notes 6
7 Further aspects of maximum likelihood
Summary
7.1 Multimodal likelihoods
7.2 Irregular form
7.3 Singular information matrix
7.4 Failure of model
7.5 Unusual parameter space
7.6 Modified likelihoods
Notes 7
8 Additional objectives
Summary
8.1 Prediction
8.2 Decision analysis
8.3 Point estimation
8.4 Non-likelihood-based methods
Notes 8
9 Randomization-based analysis
Summary
9.1 General remarks
9.2 Sampling a finite population
9.3 Design of experiments
Notes 9
Appendix A: A brief history
Appendix B: A personal view
References
Author index
Subject index
猜您喜欢