书籍详情
马尔科夫过程导论
作者:(美)丹尼尔斯特鲁克(Strook,D.W) 著
出版社:世界图书出版公司
出版时间:2009-04-01
ISBN:9787510004483
定价:¥25.00
购买这本书可以去
内容简介
To some extent, it would be accurate to summarize the contents of this book as an intolerably protracted description of what happens when either one raises a transition probability matrix P (i.e., all entries (P)o are nonnegative and each row of P sums to 1) to higher and higher powers or one exponentiates R(P - I), where R is a diagonal matrix with non-negative entries. Indeed, when it comes right down to it, that is all that is done in this book. However, I, and others of my ilk, would take offense at such a dismissive characterization of the theory of Markov chains and processes with values in a countable state space, and a primary goal of mine in writing this book was to convince its readers that our offense would be warranted
作者简介
暂缺《马尔科夫过程导论》作者简介
目录
Preface.
Chapter1 RandomWalksAGoodPlacetoBegin
1.1.NearestNeighborRandomWlalksonZ
1.1.1.DistributionatTimen
1.1.2.PassageTimesviatheReflectionPrinciple
1.1.3.SomeRelatedComputations
1.1.4.TimeofFirstReturn
1.1.5.PassageTimesviaFunctionalEquations
1.2.RecurrencePropertiesofRandomWalks
1.2.1.RandomWalksonZd
1.2.2.AnElementaryRecurrenceCriterion
1.2.3.RecurrenceofSymmetricRandomWalkinZ2
1.2.4.nansienceinZ3
1.3.Exercises
Chapter2 DoeblinSTheoryforMarkovChains
2.1.SomeGeneralities
2.1.1.ExistenceofMarkovChains
2.1.2.TransionProbabilities&ProbabilityVectors
2.1.3.nansitionProbabilitiesandFunctions
2.1.4.TheMarkovProperty
2.2.DoeblinSTheory
2.2.1.DoeblinSBasicTheorem
2.2.2.ACoupleofExtensions
2.3.ElementsofErgodicTheory
2.3.1.TheMeanErgodicTheorem
2.3.2.ReturnTimes
2.3.3.Identificationofπ
2.4.Exercises
Chapter3 MoreabouttheErgodicTheoryofMarkovChains
3.1.ClassificationofStates
3.1.1.Classification,Recurrence,andTransience
3.1.2.CriteriaforRecurrenceandTransmnge
3.1.3.Periodicity
3.2.ErgodicTheorywithoutDoeblin
3.2.1.ConvergenceofMatrices
3.2.2.AbelConvergence
3.2.3.StructureofStationaryDistributions
3.2.4.ASmallImprovement
3.2.5.TheMcanErgodicTheoremAgain
3.2.6.ARefinementinTheAperiodicCase
3.2.7.PeriodicStructure
3.3.Exercises
Chapter4 MarkovProcessesinContinuousTime
4.1.PoissonProcesses
4.1.1.TheSimplePoissonProcess
4.1.2.CompoundPoissonProcessesonZ
4.2.MarkovProcesseswithBoundedRates
4.2.1.BasicConstruction
4.2.2.TheMarkovProperty
4.2.3.TheQ-MatrixandKolmogorovSBackwardEquation
4.2.4.KolmogorovSForwardEquation
4.2.5.SolvingKolmogorovSEquation
4.2.6.AMarkovProcessfromitsInfinitesimalCharacteristics..
4.3.UnboundedRates
4.3.1.Explosion
4.3.2.CriteriaforNon.explosionorExplosion
4.3.3.WhattoDoWhenExplosionOccurs
4.4.ErgodicProperties
4.4.1.ClassificationofStates
4.4.2.StationaryMeasuresandLimitTheorems
4.4.3.Interpretingπii
4.5.Exercises
Chapter5 ReversibleMarkovProeesses
5.1.R,eversibleMarkovChains
5.1.1.ReversibilityfromInvariance
5.1.2.MeasurementsinQuadraticMean
5.1.3.TheSpectralGap
5.1.4.ReversibilityandPeriodicity
5.1.5.RelationtoConvergenceinVariation
5.2.DirichletFormsandEstimationofβ
5.2.1.TheDirichletFormandPoincar4SInequality
5.2.2.Estimatingβ+
5.2.3.Estimatingβ-
5.3.ReversibleMarkovProcessesinContinuousTime
5.3.1.CriterionforReversibility
5.3.2.ConvergenceinL2(π)forBoundedRates
5.3.3.L2(π)ConvergenceRateinGeneral
5.3.4.Estimating
5.4.GibbsStatesandGlauberDynamics
5.4.1.Formulation
5.4.2.TheDirichletForm
5.5.SimulatedAnnealing
5.5.1.TheAlgorithm
5.5.2.ConstructionoftheTransitionProbabilities
5.5.3.DescriptionoftheMarkovProcess
5.5.4.ChoosingaCoolingSchedule
5.5.5.SmallImprovements
5.6.Exercises
Chapter6 SomeMildMeasureTheory
6.1.ADescriptionofLebesguesMeasureTheory
6.1.1.MeasureSpaces
6.1.2.SomeConsequencesofCountableAdditivity
6.1.3.Generatinga-Algebras
6.1.4.MeasurableFunctions
6.1.5.LebesgueIntegration
6.1.6.StabilityPropertiesofLebesgueIntegration
6.1.7.LebesgueIntegrationinCountableSpaces
6.1.8.FubinisTheorem
6.2.ModelingProbability
6.2.1.ModelingInfinitelyManyTossesofaFairCoin
6.3.IndependentRandomVariables
6.3.1.ExistenceofLotsofIndependentRandomVariables
6.4.ConditionalProbabilitiesandExpectations
6.4.1.ConditioningwithRespecttoRandomVariables
Notation
References
Index
Chapter1 RandomWalksAGoodPlacetoBegin
1.1.NearestNeighborRandomWlalksonZ
1.1.1.DistributionatTimen
1.1.2.PassageTimesviatheReflectionPrinciple
1.1.3.SomeRelatedComputations
1.1.4.TimeofFirstReturn
1.1.5.PassageTimesviaFunctionalEquations
1.2.RecurrencePropertiesofRandomWalks
1.2.1.RandomWalksonZd
1.2.2.AnElementaryRecurrenceCriterion
1.2.3.RecurrenceofSymmetricRandomWalkinZ2
1.2.4.nansienceinZ3
1.3.Exercises
Chapter2 DoeblinSTheoryforMarkovChains
2.1.SomeGeneralities
2.1.1.ExistenceofMarkovChains
2.1.2.TransionProbabilities&ProbabilityVectors
2.1.3.nansitionProbabilitiesandFunctions
2.1.4.TheMarkovProperty
2.2.DoeblinSTheory
2.2.1.DoeblinSBasicTheorem
2.2.2.ACoupleofExtensions
2.3.ElementsofErgodicTheory
2.3.1.TheMeanErgodicTheorem
2.3.2.ReturnTimes
2.3.3.Identificationofπ
2.4.Exercises
Chapter3 MoreabouttheErgodicTheoryofMarkovChains
3.1.ClassificationofStates
3.1.1.Classification,Recurrence,andTransience
3.1.2.CriteriaforRecurrenceandTransmnge
3.1.3.Periodicity
3.2.ErgodicTheorywithoutDoeblin
3.2.1.ConvergenceofMatrices
3.2.2.AbelConvergence
3.2.3.StructureofStationaryDistributions
3.2.4.ASmallImprovement
3.2.5.TheMcanErgodicTheoremAgain
3.2.6.ARefinementinTheAperiodicCase
3.2.7.PeriodicStructure
3.3.Exercises
Chapter4 MarkovProcessesinContinuousTime
4.1.PoissonProcesses
4.1.1.TheSimplePoissonProcess
4.1.2.CompoundPoissonProcessesonZ
4.2.MarkovProcesseswithBoundedRates
4.2.1.BasicConstruction
4.2.2.TheMarkovProperty
4.2.3.TheQ-MatrixandKolmogorovSBackwardEquation
4.2.4.KolmogorovSForwardEquation
4.2.5.SolvingKolmogorovSEquation
4.2.6.AMarkovProcessfromitsInfinitesimalCharacteristics..
4.3.UnboundedRates
4.3.1.Explosion
4.3.2.CriteriaforNon.explosionorExplosion
4.3.3.WhattoDoWhenExplosionOccurs
4.4.ErgodicProperties
4.4.1.ClassificationofStates
4.4.2.StationaryMeasuresandLimitTheorems
4.4.3.Interpretingπii
4.5.Exercises
Chapter5 ReversibleMarkovProeesses
5.1.R,eversibleMarkovChains
5.1.1.ReversibilityfromInvariance
5.1.2.MeasurementsinQuadraticMean
5.1.3.TheSpectralGap
5.1.4.ReversibilityandPeriodicity
5.1.5.RelationtoConvergenceinVariation
5.2.DirichletFormsandEstimationofβ
5.2.1.TheDirichletFormandPoincar4SInequality
5.2.2.Estimatingβ+
5.2.3.Estimatingβ-
5.3.ReversibleMarkovProcessesinContinuousTime
5.3.1.CriterionforReversibility
5.3.2.ConvergenceinL2(π)forBoundedRates
5.3.3.L2(π)ConvergenceRateinGeneral
5.3.4.Estimating
5.4.GibbsStatesandGlauberDynamics
5.4.1.Formulation
5.4.2.TheDirichletForm
5.5.SimulatedAnnealing
5.5.1.TheAlgorithm
5.5.2.ConstructionoftheTransitionProbabilities
5.5.3.DescriptionoftheMarkovProcess
5.5.4.ChoosingaCoolingSchedule
5.5.5.SmallImprovements
5.6.Exercises
Chapter6 SomeMildMeasureTheory
6.1.ADescriptionofLebesguesMeasureTheory
6.1.1.MeasureSpaces
6.1.2.SomeConsequencesofCountableAdditivity
6.1.3.Generatinga-Algebras
6.1.4.MeasurableFunctions
6.1.5.LebesgueIntegration
6.1.6.StabilityPropertiesofLebesgueIntegration
6.1.7.LebesgueIntegrationinCountableSpaces
6.1.8.FubinisTheorem
6.2.ModelingProbability
6.2.1.ModelingInfinitelyManyTossesofaFairCoin
6.3.IndependentRandomVariables
6.3.1.ExistenceofLotsofIndependentRandomVariables
6.4.ConditionalProbabilitiesandExpectations
6.4.1.ConditioningwithRespecttoRandomVariables
Notation
References
Index
猜您喜欢