书籍详情

线性代数群

线性代数群

作者:(美)以弗莱斯 著

出版社:世界图书出版公司

出版时间:2009-04-01

ISBN:9787510004414

定价:¥28.00

购买这本书可以去
内容简介
  For this printing, I have corrected some errors and made numerous minor changes in the interest of clarity. The most significant corrections occur in Sections 4.2, 4.3, 5.5, 30.3, 32.1, and 32.3. I have also updated the biblio-graphy to some extent. Thanks are due to a number of readers who took the trouble to point out errors, or obscurities; especially helpful were the detailed comments of Jose Antonio Vargas.
作者简介
暂缺《线性代数群》作者简介
目录
I.AlgebraicGeometry
0.SomeCommutativeAlgebra
1.AffineandProjectiveVarieties
1.1 IdealsandAflineVarieties
1.2 ZariskiTopologyonAffineSpace
1.3 IrreducibleComponents
1.4 ProductsofAffineVarieties
1.5 AffineAlgebrasandMorphisms
1.6 ProjectiveVarieties
1.7 ProductsofProjectiveVarieties
1.8 FlagVarieties
2.Varieties
2.1 LocalRings
2.2 Prevarieties
2.3 Morphisms
2.4 Products
2.5 HausdorffAxiom
3.Dimension
3.1 DimensionofaVariety
3.2 DimensionofaSubvariety
3.3 DimensionTheorem
3.4 Consequences
4.Morphisms
4.1 FibresofaMorphism
4.2 FiniteMorphisms
4.3 ImageofaMorphism
4.4 ConstructibleSets
4.5 OpenMorphisms
4.6 BijectiveMorphisms
4.7 BirationalMorphisms
5.TangentSpaces
5.1 ZariskiTangentSpace
5.2 ExistenceofSimplePoints
5.3 LocalRingofaSimplePoint
5.4 DifferentialofaMorphism
5.5 DifferentialCriterionforSeparability
6.CompleteVarieties
6.1 BasicProperties
6.2 CompletenessofProjectiveVarieties
6.3 VarietiesIsomorphictoP
6.4 AutomorphismsofP
II.AflineAlgebraicGroups
7.BasicConceptsandExamples
7.1 TheNotionofAlgebraicGroup
7.2 SomeClassicalGroups
7.3 IdentityComponent
7.4 SubgroupsandHomomorphisms
7.5 GenerationbyIrreducibleSubsets
7.6 HopfAIgebras
8.ActionsofAlgebraicGroupsonVarieties
8.1 GroupActions
8.2 ActionsofAlgebraicGroups
8.3 ClosedOrbits
8.4 SemidirectProducts
8.5 TranslationofFunctions
8.6 LinearizationofAffineGroups
III.LieAlgebras
9.LieAlgebraofanAlgebraicGroup
9.1 LieAlgebrasandTangentSpaces
9.2 Convolution
9.3 Examples
9.4 SubgroupsandLieSubalgebras
9.5 DualNumbers
10.Differentiation
10.1 SomeElementaryFormulas
10.2 DifferentialofRightTranslation
10.3 TheAdjointRepresentation
10.4 DifferentialofAd
10.5 Commutators
10.6 Centralizers
10.7 AutomorphismsandDerivations
IV.HomogeneousSpaces
11.ConstructionofCertainRepresentations
11.1 ActiononExteriorPowers
11.2 ATheoremofChevalley
11.3 PassagetoProjectiveSpace
11.4 CharactersandSemi-lnvariants
11.5 NormalSubgroups
12.Quotients
12.1 UniversalMappingProperty
12.2 TopologyofY
12.3 FunctionsonY
12.4 Complements
12.5 Characteristic0
V.Characteristic0Theory
13.CorrespondenceBetweenGroupsandLieAlgebras
13.1 TheLatticeCorrespondence
13.2 InvariantsandInvariantSubspaces
13.3 NormalSubgroupsandIdeals
13.4 CentersandCentralizers
13.5 SemisimpleGroupsandLieAlgebras
14.SemisimpleGroups
14.1 TheAdjointRepresentation
14.2 SubgroupsoraSemisimpleGroup
14.3 CompleteReducibilityofRepresentations
VI.SemisimpleandUnipotentElements
15.Jordan-ChevalleyDecomposition
15.1 DecompositionofaSingleEndomorphism
15.2 GL(n,K)andgl(n,K)
15.3 JordanDecompositioninAlgebraicGroups
15.4 CommutingSetsofEndomorphisms
15.5 StructureofCommutativeAlgebraicGroups
16.DiagonalizableGroups
16.1 Charactersandd-Groups
16.2 Tori
16.3 RigidityofDiagonalizableGroups
16.4 WeightsandRoots
VII.SolvableGroups
17.NilpotentandSolvableGroups
17.1 AGroup-TheoreticLemma
17.2 CommutatorGroups
17.3 SolvableGroups
17.4 NilpotentGroups
17.5 UnipotentGroups
17.6 Lie-KolchinTheorem
18.SemisimpleElements
18.1 GlobalandInfinitesimalCentralizers
18.2 ClosedConjugacyClasses
18.3 ActionofaSemisimpleElementonaUnipotentGroup
18.4 ActionofaDiagonalizableGroup
19.ConnectedSolvableGroups
19.1 AnExactSequence
19.2 TheNilpotentCase
19.3 TheGeneralCase
19.4 NormalizerandCentralizer
19.5 SolvableandUnipotentRadicals
20.OneDimensionalGroups
20.1 CommutativityofG
20.2 VectorGroupsande-Groups
20.3 Propertiesofp-Polynomials
20.4 AutomorphismsofVectorGroups
20.5 TheMainTheorem
VIII.BorelSubgroups
21.FixedPointandConjugacyTheorems
21.1 ReviewofCompleteVarieties
21.2 FixedPointTheorem
21.3 ConjugacyofBorelSubgroupsandMaximalTori
21.4 FurtherConsequences
22.DensityandConnectednessTheorems
22.1 TheMainLemma
22.2 DensityTheorem
22.3 ConnectednessTheorem
22.4 BorelSubgroupsofCG(S)
22.5 CartanSubgroups:Summary
23.NormalizerTheorem
23.1 StatementoftheTheorem
23.2 ProofoftheTheorem
23.3 TheVarietyG/B
23.4 Summary
IX.CentralizersofTori
24.RegularandSingularTori
24.1 WeylGroups
24.2 RegularTori
24.3 SingularToriandRoots
24.4 Regular1-ParameterSubgroups
25.ActionofaMaximalTorusonG/B
25.1 Actionofa1-ParameterSubgroup
25.2 ExistenceofEnoughFixedPoints
25.3 GroupsofSemisimpleRank1
25.4 WeylChambers
26.TheUnipotentRadical
26.1 CharacterizationofRu(G)
26.2 SomeConsequences
26.3 TheGroupsUa
X.StructureofReductiveGroups
27.TheRootSystem
27.1 AbstractRootSystems
27.2 TheIntegralityAxiom
27.3 SimpleRoots
27.4 TheAutomorphismGroupofaSemisimpleGroup
27.5 SimpleComponents
28.BruhatDecomposition
28.1 T-StableSubgroupsofBu
28.2 GroupsofSemisimpleRank1
28.3 TheBruhatDecomposition
28.4 NormalForminG
28.5 Complements
29.TitsSystems
29.1 Axioms
29.2 BruhatDecomposition
29.3 ParabolicSubgroups
29.4 GeneratorsandRelationsforW
29.5 NormalSubgroupsofG
30.ParabolicSubgroups
30.1 StandardParabolicSubgroups
30.2 LeviDecompositions
30.3 ParabolicSubgroupsAssociatedtoCertainUnipotentGroups
30.4 MaximalSubgroupsandMaximalUnipotentSubgroups
XI.RepresentationsandClassificationofSemisimpleGroups
31.Representations
31.1 Weights
31.2 MaximalVectors
31.3 IrreducibleRepresentations
31.4 ConstructionofIrreducibleRepresentations
31.5 MultiplicitiesandMinimalHighestWeights
31.6 ContragredientsandInvariantBilinearForms
32.IsomorphismTheorem
32.1 TheClassificationProblem
32.2 ExtensionofψTtoN(T)
32.3 ExtensionofψTtoZa
32.4 ExtensionofψTtoTUa
32.5 ExtensionofψTtoB
32.6 Multiplicativityofψ
33.RootSystemsofRank2
33.1 Reformulationof(A),(B),(C)
33.2 SomePreliminaries
33.3 TypeA2
33.4 TypeB2
33.5 TypeG2
33.6 TheExistenceProblem
XII.SurveyofRationalityProperties
34.FieldsofDefinition
34.1 Foundations
34.2 ReviewofEarlierChapters
34.3 Tori
34.4 SomeBasicTheorems
34.5 Borei-TitsStructureTheory
34.6 AnExample:OrthogonalGroups
35.SpecialCases
35.1 SplitandQuasisplitGroups
35.2 FiniteFields
35.3 TheRealField
35.4 LocalFields
35.5 Classification
Appendix.RootSystems
Bibliography
IndexofTerminology
IndexofSymbols
猜您喜欢

读书导航