书籍详情
数学建模方法与分析(英文版 第3版)
作者:(美)米尔斯切特 著
出版社:机械工业出版社
出版时间:2009-01-01
ISBN:9787111253648
定价:¥49.00
购买这本书可以去
内容简介
本书提出了一种通用的数学建模方法——五步方法。帮助读者迅速掌握数学建模的真谛。作者以引人入胜的方式描述了数学模型的3个主要领域:最优化、动力系统和随机过程。本书以实用的方法解决各式各样的现实问题,包括空间飞船的对接、传染病的增长率和野生生物的管理等。此外,本书根据需要详细介绍了解决问题所需要的数学知识。本版新增内容:增加了关于时间序列分析和扩散模型的新节。关注国际性问题,如经济预测、人口控制、蓄水池。此外,更新了最优化问题。
作者简介
Mark M.Meerschaert(米尔斯切特),美国密歇根州立大学概率统计系主任,内华达大学物理系教授。他曾在密歇根大学、莫格兰学院、新西兰达尼丁Otago大学执教,讲授过数学建模、概率、统计学、运筹学、偏微分方程、地下水及地表水水文学与统计物理学课程。他当前的研究方向包括无限方差概率模型的极限定理和参数估计、金融数学中的厚尾模型、用厚尾模型及周期协方差结构建模河水流、异常扩散、连续时间随机流动、分数次导数和分数次偏微分方程、地下水流及运输。
目录
Preface
Ⅰ OPTIMIZATION MODELS
1 ONE VARIABLE OPTIMIZATION
1.1 The Five-Step Method
1.2 Sensitivity Analysis
1.3 Sensitivity and Robustness
1.4 Exercises
2 MULTIVARIABLE OPTIMIZATION
2.1 Unconstrained Optimization
2.2 Lagrange Multipliers
2.3 Sensitivity Analysis and Shadow Prices
2.4 Exercises
3 COMPUTATIONAL METHODS FOR OPTIMIZATION
3.1 One Variable Optimization
3.2 Multivariable Optimization
3.3 Linear Programming
3.4 Discrete Optimization
3.5 Exercises
Ⅱ DYNAMIC MODELS
4 INTRODUCTION TO DYNAMIC MODELS
4.1 Steady State Analysis
4.2 Dynamical Systems
4.3 Discrete Time Dynamical Systems
4.4 Exercises
5 ANALYSIS OF DYNAMIC MODELS
5.1 Eigenvalue Methods
5.2 Eigenvalue Methods for Discrete Systems
5.3 Phase Portraits
5.4 Exercises
6 SIMULATION OF DYNAMIC MODELS
6.1 Introduction to Simulation
6.2 Continuous-Time Models
6.3 The Euler Method
6.4 Chaos and Fractais
6.5 Exercises
Ⅲ PROBABILITY MODELS
7 INTRODUCTION TO PROBABILITY MODELS
7.1 Discrete Probability Models
7.2 Continuous Probability Models
7.3 Introduction to Statistics
7.4 Diffusion
7.5 Exercises
8 STOCHASTIC MODELS
8.1 Markov Chains
8.2 Markov Processes
8.3 Linear Regression
8.4 Time Series
8.5 Exercises
9 SIMULATION OF PROBABILITY MODELS
9.1 Monte Carlo Simulation
9.2 The MarkovProperty
9.3 Analytic Simulation
9.4 Exercises
Afterword
Index
Ⅰ OPTIMIZATION MODELS
1 ONE VARIABLE OPTIMIZATION
1.1 The Five-Step Method
1.2 Sensitivity Analysis
1.3 Sensitivity and Robustness
1.4 Exercises
2 MULTIVARIABLE OPTIMIZATION
2.1 Unconstrained Optimization
2.2 Lagrange Multipliers
2.3 Sensitivity Analysis and Shadow Prices
2.4 Exercises
3 COMPUTATIONAL METHODS FOR OPTIMIZATION
3.1 One Variable Optimization
3.2 Multivariable Optimization
3.3 Linear Programming
3.4 Discrete Optimization
3.5 Exercises
Ⅱ DYNAMIC MODELS
4 INTRODUCTION TO DYNAMIC MODELS
4.1 Steady State Analysis
4.2 Dynamical Systems
4.3 Discrete Time Dynamical Systems
4.4 Exercises
5 ANALYSIS OF DYNAMIC MODELS
5.1 Eigenvalue Methods
5.2 Eigenvalue Methods for Discrete Systems
5.3 Phase Portraits
5.4 Exercises
6 SIMULATION OF DYNAMIC MODELS
6.1 Introduction to Simulation
6.2 Continuous-Time Models
6.3 The Euler Method
6.4 Chaos and Fractais
6.5 Exercises
Ⅲ PROBABILITY MODELS
7 INTRODUCTION TO PROBABILITY MODELS
7.1 Discrete Probability Models
7.2 Continuous Probability Models
7.3 Introduction to Statistics
7.4 Diffusion
7.5 Exercises
8 STOCHASTIC MODELS
8.1 Markov Chains
8.2 Markov Processes
8.3 Linear Regression
8.4 Time Series
8.5 Exercises
9 SIMULATION OF PROBABILITY MODELS
9.1 Monte Carlo Simulation
9.2 The MarkovProperty
9.3 Analytic Simulation
9.4 Exercises
Afterword
Index
猜您喜欢