书籍详情

有限自动机及在密码学中的应用

有限自动机及在密码学中的应用

作者:陶仁骥 著

出版社:清华大学出版社

出版时间:2008-09-01

ISBN:9787302175308

定价:¥98.00

购买这本书可以去
内容简介
  《有限自动机及在密码学中的应用》主要研究有限自动机的可逆性理论及其在密码学上的应用。此外,也讨论自治有限自动机和拉丁阵,它们与有限自动机单钥密码的标准形有关。有限自动机是被认为是密码的自然模型。《有限自动机及在密码学中的应用》作者提出并发展了RaRb变换方法,用它彻底解决了有限域上(拟)线性有限自动机的结构问题。与经典的线性系统“传输函数方法”不同,RaRb变换方法可推广到非线性有限自动机;大量弱可逆有限自动机及其弱逆可用它产生,这就导致基于有限自动机的公开钥密码(简记为FAPKC)的提出。《有限自动机及在密码学中的应用》可用作计算机科学和数学专业高年级和研究生课程的参考书。
作者简介
暂缺《有限自动机及在密码学中的应用》作者简介
目录
ForewordbyArtoSalomaa.
Preface
1. Introduction
1.1 Preliminaries
1.1.1 RelationsandFunctions
1.1.2 Graphs
1.2 DefinitionsofFiniteAutomata
1.2.1 FiniteAutomataasTransducers
1.2.2 SpecialFiniteAutomata
1.2.3 CompoundFiniteAutomata
1.2.4 FiniteAutomataasRecognizers
1.3 LinearFiniteAutomata
1.4 ConceptsonInvertibility
1.5 ErrorPropagationandFeedforwardInvertibility
1.6 LabelledTreesasStatesofFiniteAutomata
2. MutualInvertibilityandSearch
2.1 MinimalOutputWeightandInputSet
2.2 MutualInvertibilityofFiniteAutomata
2.3 FindInputbySearch
2.3.1 OnOutputSetandInputTree
2.3.2 ExhaustingSearch
2.3.3 StochasticSearch
3. RaRbTransformationMethod
3.1 SufficientConditionsandInversion
3.2 GenerationofFiniteAutomatawithInvertibility
3.3 InvertibilityofQuasi-LinearFiniteAutomata
3.3.1 DecisionCriteria
3.3.2 StructureProblem
4. RelationsBetweenTransformations
4.1 RelationsBetweenRaRbTransformations
4.2 CompositionofRaRbTransformations
4.3 ReducedEchelonMatrix
4.4 CanonicalDiagonalMatrixPolynomial
4.4.1 RaRbTransformationsoverMatrixPolynomial
4.4.2 RelationsBetweenRaRbTransformationandCanonicalDiagonalForm
4.4.3 RelationsofRight-Parts
4.4.4 ExistenceofTerminatingRaRbTransformationSequence
5. StructureofFeedforwardInverses
5.1 ADecisionCriterion..
5.2 DelayFree
5.3 OneStepDelay
5.4 TwoStepDelay
6. SomeTopicsonStructureProblem
6.1 SomeVariantsofFiniteAutomata
6.1.1 PartialFiniteAutomata
6.1.2 NondeterministicFiniteAutomata
6.2 InversesofaFiniteAutomaton
6.3 OriginalInversesofaFiniteAutomaton
6.4 WeakInversesofaFiniteAutomaton
6.5 OriginalWeakInversesofaFiniteAutomaton
6.6 WeakInverseswithBoundedErrorPropagationofaFiniteAutomaton
7. LinearAutonomousFiniteAutomata
7.1 BinomialCoefficient
7.2 RootRepresentation
7.3 TranslationandPeriod
7.3.1 ShiftRegisters
7.3.2 FiniteAutomata
7.4 Linearization
7.5 Decimation
8. OneKeyCryptosystemsandLatinArrays
8.1 CanonicalFormforFiniteAutomatonOneKeyCryptosystems
8.2 LatinArrays
8.2.1 Definitions
8.2.2 On(n,k,r)-LatinArrays
8.2.3 Invariant
8.2.4 AutotopismGroup
8.2.5 TheCasen=2,3
8.2.6 TheCasen=4,k≤4
8.3 LinearlyIndependentLatinArrays
8.3.1 LatinArraysofInvertibleFunctions
8.3.2 GenerationofLinearlyIndependentPermutations
9. FiniteAutomatonPublicKeyCryptosystems
9.1 TheoreticalFundamentals
9.2 BasicAlgorithm
9.3 AnExampleofFAPKC
9.4 OnWeakKeys
9.4.1 LinearRaRbTransformationTest
9.4.2 OnAttackbyReducedEchelonMatrix
9.4.3 OnAttackbyCanonicalDiagonalMatrixPolynomial
9.5 Security
9.5.1 InversionbyaGeneralMethod
9.5.2 InversionbyDecomposingFiniteAutomata
9.5.3 ChosenPlaintextAttack
9.5.4 ExhaustingSearchandStochasticSearch
9.6 GeneralizedAlgorithms
9.6.1 SomeTheoreticalResults
9.6.2 TwoAlgorithms
References
Index
猜您喜欢

读书导航