书籍详情
有限自动机及在密码学中的应用
作者:陶仁骥 著
出版社:清华大学出版社
出版时间:2008-09-01
ISBN:9787302175308
定价:¥98.00
购买这本书可以去
内容简介
《有限自动机及在密码学中的应用》主要研究有限自动机的可逆性理论及其在密码学上的应用。此外,也讨论自治有限自动机和拉丁阵,它们与有限自动机单钥密码的标准形有关。有限自动机是被认为是密码的自然模型。《有限自动机及在密码学中的应用》作者提出并发展了RaRb变换方法,用它彻底解决了有限域上(拟)线性有限自动机的结构问题。与经典的线性系统“传输函数方法”不同,RaRb变换方法可推广到非线性有限自动机;大量弱可逆有限自动机及其弱逆可用它产生,这就导致基于有限自动机的公开钥密码(简记为FAPKC)的提出。《有限自动机及在密码学中的应用》可用作计算机科学和数学专业高年级和研究生课程的参考书。
作者简介
暂缺《有限自动机及在密码学中的应用》作者简介
目录
ForewordbyArtoSalomaa.
Preface
1. Introduction
1.1 Preliminaries
1.1.1 RelationsandFunctions
1.1.2 Graphs
1.2 DefinitionsofFiniteAutomata
1.2.1 FiniteAutomataasTransducers
1.2.2 SpecialFiniteAutomata
1.2.3 CompoundFiniteAutomata
1.2.4 FiniteAutomataasRecognizers
1.3 LinearFiniteAutomata
1.4 ConceptsonInvertibility
1.5 ErrorPropagationandFeedforwardInvertibility
1.6 LabelledTreesasStatesofFiniteAutomata
2. MutualInvertibilityandSearch
2.1 MinimalOutputWeightandInputSet
2.2 MutualInvertibilityofFiniteAutomata
2.3 FindInputbySearch
2.3.1 OnOutputSetandInputTree
2.3.2 ExhaustingSearch
2.3.3 StochasticSearch
3. RaRbTransformationMethod
3.1 SufficientConditionsandInversion
3.2 GenerationofFiniteAutomatawithInvertibility
3.3 InvertibilityofQuasi-LinearFiniteAutomata
3.3.1 DecisionCriteria
3.3.2 StructureProblem
4. RelationsBetweenTransformations
4.1 RelationsBetweenRaRbTransformations
4.2 CompositionofRaRbTransformations
4.3 ReducedEchelonMatrix
4.4 CanonicalDiagonalMatrixPolynomial
4.4.1 RaRbTransformationsoverMatrixPolynomial
4.4.2 RelationsBetweenRaRbTransformationandCanonicalDiagonalForm
4.4.3 RelationsofRight-Parts
4.4.4 ExistenceofTerminatingRaRbTransformationSequence
5. StructureofFeedforwardInverses
5.1 ADecisionCriterion..
5.2 DelayFree
5.3 OneStepDelay
5.4 TwoStepDelay
6. SomeTopicsonStructureProblem
6.1 SomeVariantsofFiniteAutomata
6.1.1 PartialFiniteAutomata
6.1.2 NondeterministicFiniteAutomata
6.2 InversesofaFiniteAutomaton
6.3 OriginalInversesofaFiniteAutomaton
6.4 WeakInversesofaFiniteAutomaton
6.5 OriginalWeakInversesofaFiniteAutomaton
6.6 WeakInverseswithBoundedErrorPropagationofaFiniteAutomaton
7. LinearAutonomousFiniteAutomata
7.1 BinomialCoefficient
7.2 RootRepresentation
7.3 TranslationandPeriod
7.3.1 ShiftRegisters
7.3.2 FiniteAutomata
7.4 Linearization
7.5 Decimation
8. OneKeyCryptosystemsandLatinArrays
8.1 CanonicalFormforFiniteAutomatonOneKeyCryptosystems
8.2 LatinArrays
8.2.1 Definitions
8.2.2 On(n,k,r)-LatinArrays
8.2.3 Invariant
8.2.4 AutotopismGroup
8.2.5 TheCasen=2,3
8.2.6 TheCasen=4,k≤4
8.3 LinearlyIndependentLatinArrays
8.3.1 LatinArraysofInvertibleFunctions
8.3.2 GenerationofLinearlyIndependentPermutations
9. FiniteAutomatonPublicKeyCryptosystems
9.1 TheoreticalFundamentals
9.2 BasicAlgorithm
9.3 AnExampleofFAPKC
9.4 OnWeakKeys
9.4.1 LinearRaRbTransformationTest
9.4.2 OnAttackbyReducedEchelonMatrix
9.4.3 OnAttackbyCanonicalDiagonalMatrixPolynomial
9.5 Security
9.5.1 InversionbyaGeneralMethod
9.5.2 InversionbyDecomposingFiniteAutomata
9.5.3 ChosenPlaintextAttack
9.5.4 ExhaustingSearchandStochasticSearch
9.6 GeneralizedAlgorithms
9.6.1 SomeTheoreticalResults
9.6.2 TwoAlgorithms
References
Index
Preface
1. Introduction
1.1 Preliminaries
1.1.1 RelationsandFunctions
1.1.2 Graphs
1.2 DefinitionsofFiniteAutomata
1.2.1 FiniteAutomataasTransducers
1.2.2 SpecialFiniteAutomata
1.2.3 CompoundFiniteAutomata
1.2.4 FiniteAutomataasRecognizers
1.3 LinearFiniteAutomata
1.4 ConceptsonInvertibility
1.5 ErrorPropagationandFeedforwardInvertibility
1.6 LabelledTreesasStatesofFiniteAutomata
2. MutualInvertibilityandSearch
2.1 MinimalOutputWeightandInputSet
2.2 MutualInvertibilityofFiniteAutomata
2.3 FindInputbySearch
2.3.1 OnOutputSetandInputTree
2.3.2 ExhaustingSearch
2.3.3 StochasticSearch
3. RaRbTransformationMethod
3.1 SufficientConditionsandInversion
3.2 GenerationofFiniteAutomatawithInvertibility
3.3 InvertibilityofQuasi-LinearFiniteAutomata
3.3.1 DecisionCriteria
3.3.2 StructureProblem
4. RelationsBetweenTransformations
4.1 RelationsBetweenRaRbTransformations
4.2 CompositionofRaRbTransformations
4.3 ReducedEchelonMatrix
4.4 CanonicalDiagonalMatrixPolynomial
4.4.1 RaRbTransformationsoverMatrixPolynomial
4.4.2 RelationsBetweenRaRbTransformationandCanonicalDiagonalForm
4.4.3 RelationsofRight-Parts
4.4.4 ExistenceofTerminatingRaRbTransformationSequence
5. StructureofFeedforwardInverses
5.1 ADecisionCriterion..
5.2 DelayFree
5.3 OneStepDelay
5.4 TwoStepDelay
6. SomeTopicsonStructureProblem
6.1 SomeVariantsofFiniteAutomata
6.1.1 PartialFiniteAutomata
6.1.2 NondeterministicFiniteAutomata
6.2 InversesofaFiniteAutomaton
6.3 OriginalInversesofaFiniteAutomaton
6.4 WeakInversesofaFiniteAutomaton
6.5 OriginalWeakInversesofaFiniteAutomaton
6.6 WeakInverseswithBoundedErrorPropagationofaFiniteAutomaton
7. LinearAutonomousFiniteAutomata
7.1 BinomialCoefficient
7.2 RootRepresentation
7.3 TranslationandPeriod
7.3.1 ShiftRegisters
7.3.2 FiniteAutomata
7.4 Linearization
7.5 Decimation
8. OneKeyCryptosystemsandLatinArrays
8.1 CanonicalFormforFiniteAutomatonOneKeyCryptosystems
8.2 LatinArrays
8.2.1 Definitions
8.2.2 On(n,k,r)-LatinArrays
8.2.3 Invariant
8.2.4 AutotopismGroup
8.2.5 TheCasen=2,3
8.2.6 TheCasen=4,k≤4
8.3 LinearlyIndependentLatinArrays
8.3.1 LatinArraysofInvertibleFunctions
8.3.2 GenerationofLinearlyIndependentPermutations
9. FiniteAutomatonPublicKeyCryptosystems
9.1 TheoreticalFundamentals
9.2 BasicAlgorithm
9.3 AnExampleofFAPKC
9.4 OnWeakKeys
9.4.1 LinearRaRbTransformationTest
9.4.2 OnAttackbyReducedEchelonMatrix
9.4.3 OnAttackbyCanonicalDiagonalMatrixPolynomial
9.5 Security
9.5.1 InversionbyaGeneralMethod
9.5.2 InversionbyDecomposingFiniteAutomata
9.5.3 ChosenPlaintextAttack
9.5.4 ExhaustingSearchandStochasticSearch
9.6 GeneralizedAlgorithms
9.6.1 SomeTheoreticalResults
9.6.2 TwoAlgorithms
References
Index
猜您喜欢