书籍详情

随机矩阵在物理学中的应用(影印版)

随机矩阵在物理学中的应用(影印版)

作者:(德)布拉钦

出版社:科学出版社

出版时间:2008-08-01

ISBN:9787030226266

定价:¥98.00

购买这本书可以去
内容简介
  Dyson和Wigner最先成功地将随机矩阵应用到物理学中,经过六七十年的发展,现在它在物理学中的应用越来越广泛,并且已经渗透到了现代数学、物理学的很多新兴领域,是理论物理学家的重要数学工具。随机矩阵理论相关的数学方法能够解决更多的问题,而且方式更加灵活,在物理学中的应用也更加深入,可以用来计算介观系统的通用关系。它在无序系统和量子混沌领域也有一些新的应用,并且通过建立新的矩阵模型,在二维引力和弦以及非阿贝尔规范理论方面取得了重要进展。本书由本领域的杰出学者撰写,系统阐述了相关的理论知识。适合对随机矩阵处理物理问题感兴趣的研究生和科研人员参考。
作者简介
暂缺《随机矩阵在物理学中的应用(影印版)》作者简介
目录
Preface
Random Matrices and Number Theory
J.P. Keating
 1 Introduction
 2 ζ(1/2+it)and logζ(1/2+it)
 3 Characteristic polynomials of random unitary matrices
 4 Other compact groups
 5 Families of L-functions and symmetry
 6 Asymptotic expansions
References
2D Quantum Gravity, Matrix Models and Graph Combinatorics
P. Di Francesco
 1 Introduction
 2 Matrix models for 2D quantum gravity
 3 The one-matrix model I: large N limit and the enumeration of planar graphs
 4 The trees behind the graphs
 5 The one-matrix model II:topological expansions and quantum gravity 58
 6 The combinatorics beyond matrix models: geodesic distance in planar graphs
 7 Planar graphs as spatial branching processes
 8 Conclusion
References
Eigenvalue Dynamics, Follytons and Large N Limits of Matrices
Joakim Arnlind, Jens Hoppe
References
Random Matrices and Supersymmetry in Disordered Systems
K.B. Efetov
 1 Supersymmetry method
 2 Wave functions fluctuations in a finite volume. Multifractality
 3 Recent and possible future developments
 4 Summary
Acknowledgements
References
Hydrodynamics of Correlated Systems
Alexander G.Abanoy
 1 Introduction
 2 Instanton or rare fluctuation method
 3 Hydrodynam ic approach
 4 Linearized hydrodynamics or bosoflization
 5 EFP through an asymptotics of the solution
 6 Free fermions
 7 Calogero-Sutherland model
 8 Free fermions on the lattice
 9 Conclusion
Acknowledgements
Appendix:Hydrodynamic approach to non-Galilean invariant systems
Appendix:Exact results for EFP in some integrable models
References
QCD,Chiral Random Matrix Theory and Integrability
J.JM.Verbaarschot
 1 Summarv
 2 IntrodUCtion
 3 OCD
 4 The Dirac spectrum in QCD
 5 Low eflergy limit of QCD
 6 Chiral RMT and the QCD Dirac spectrum
 7 Integrability and the QCD partition function
 8 QCD at fin ite baryon density
 9 Full QCD at nonzero chemical potential
 10 Conclusions
Acknowledgements
References
EUClidean Random Matrices:SOlved and Open Problems
Giorgio Parisi
 1 Introduction
 2 Basic definitions
 3 Physical motivations
 4 Field theory
 5 The simplest case
 6 Phonons
References
Matrix Models and Growth Processes3
A.Zabrodin
 1 Introduction
 2 Some ensembles of random matrices with cornplex eigenvalues
 3 Exact results at finite N
 4 Large N limit
 5 The matrix model as a growth problem
References
Matrix Models and Topological Strings
Marcos Marino
 1 Introduction
 2 Matrix models
 3 Type B topological strings and matrix models
 4 Type A topological strings, Chern-Simons theory and matrix models 366
References
Matrix Models of Moduli Space
Sunil Mukhi
 1 Introduction
 2 Moduli space of Riemann surfaces and its topology
 3 Quadratic differentials and fatgraphs
 4 The Penner model
 5 Penner model and matrix gamma function
 6 The Kontsevich Model
 7 Applications to string theory
 8 Conclusions
References
Matrix Models and 2D String Theory
Emil J. Martinec
 1 Introduction
 2 An overview of string theory
 3 Strings in D-dimensional spacetime
 4 Discretized surfaces and 2D string theory
 5 An overview of observables
 6 Sample calculation: the disk one-point function
 7 Worldsheet description of matrix eigenvalues
 8 Further results
 9 Open problems
References
Matrix Models as Conformal Field Theories
Ivan K. Kostov
 1 Introduction and historical notes
 2 Hermitian matrix integral: saddle points and hyperelliptic curves
 3 The hermitian matrix model as a chiral CFT
 4 Quasiclassical expansion: CFT on a hyperelliptic Riemann surface
 5 Generalization to chains of random matrices
References
Large N Asymptotics of Orthogonal Polynomials from Integrability to Algebraic Geometry
B. Eynard
 1 Introduction
 2 Definitions
 3 Orthogonal polynomials
 4 Differential equations and integrability
 5 Riemann-Hilbert problems and isomonodromies
 6 WKB-like asymptotics and spectral curve
 7 Orthogonal polynomials as matrix integrals
 8 Computation of derivatives of F(0)
 9 Saddle point method
 10 Solution of the saddlepoint equation
 11 Asymptotics of orthogonal polynomials
 12 Conclusion
References
猜您喜欢

读书导航