书籍详情
小平邦彦复分析(英文版)
作者:(日)小平邦彦
出版社:人民邮电出版社
出版时间:2008-06-01
ISBN:9787115178404
定价:¥59.00
购买这本书可以去
内容简介
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书
作者简介
小平邦彦,20世纪日本最伟大的数学家之一,他是迄今为止为数不多的既获得菲尔兹奖(1954年)、又获得沃尔夫奖(1985年)的数学家。1957年被日本政府授予文化勋章。他是日本学士院院士、美国科学院和德国哥廷根科学院外籍院士。先后在美国普林斯顿高等研究中心、哈佛大学、约翰?霍普金斯大学、斯坦福大学、日本东京大学等任教授。他在调和积分理论、代数几何学和复解析几何学等诸多领域做出了卓越的贡献,著作有《微积分入门》(卷Ⅰ和卷Ⅱ)、《复分析》、《复流形理论》等。
目录
1 Holomorphic functions
1.1 Holomorphic functions
1.2 Power series
1.3 Integrals
1.4 Properties ofholomorphic functions
2 Cauchy's Theorem
2.1 Piecewise smooth curves
2.2 Cellular decomposition
2.3 Cauchy's Theorem
2.4 Differentiability and homology
3 Conformal mappings
3.1 Conformal mappings
3.2 The Riemann sphere
3.3 Linear fractional transformations
4 Analytic continuation
4.1 Analytic continuation
4.2 Analytic continuation along curves
4.3 Analytic continuation by integrals
4.4 Cauchy's Theorem (continued)
5 Riemann's Mapping Theorem
5.1 Riemann's Mapping Theorem
5.2 Correspondence of boundaries
5.3 The principle of reflection
6 Riemann surfaces
6.1 Differential forms
6.2 Riemann surfaces
6.3 Differential forms on a Riemann surface
6.4 Dirichlet's Principle
7 The structure of Riemann surfaces
7.1 Planar Riemann surfaces
7.2 Compact Riemann surfaces
8 Analytic functions on a closed Riemann surface
8.1 Abelian differentials of the first kind
8.2 Abelian differentials of the second and third kind
8.3 The Riemann-Roch Theorem
8.4 Abel's Theorem
Problems
Index
1.1 Holomorphic functions
1.2 Power series
1.3 Integrals
1.4 Properties ofholomorphic functions
2 Cauchy's Theorem
2.1 Piecewise smooth curves
2.2 Cellular decomposition
2.3 Cauchy's Theorem
2.4 Differentiability and homology
3 Conformal mappings
3.1 Conformal mappings
3.2 The Riemann sphere
3.3 Linear fractional transformations
4 Analytic continuation
4.1 Analytic continuation
4.2 Analytic continuation along curves
4.3 Analytic continuation by integrals
4.4 Cauchy's Theorem (continued)
5 Riemann's Mapping Theorem
5.1 Riemann's Mapping Theorem
5.2 Correspondence of boundaries
5.3 The principle of reflection
6 Riemann surfaces
6.1 Differential forms
6.2 Riemann surfaces
6.3 Differential forms on a Riemann surface
6.4 Dirichlet's Principle
7 The structure of Riemann surfaces
7.1 Planar Riemann surfaces
7.2 Compact Riemann surfaces
8 Analytic functions on a closed Riemann surface
8.1 Abelian differentials of the first kind
8.2 Abelian differentials of the second and third kind
8.3 The Riemann-Roch Theorem
8.4 Abel's Theorem
Problems
Index
猜您喜欢