书籍详情
代数拓扑(英文版)
作者:(美)斯潘尼尔
出版社:世界图书出版公司
出版时间:2008-01-01
ISBN:9787506283465
定价:¥59.00
购买这本书可以去
内容简介
本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。第一章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。最后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。本书为全英文版。
作者简介
暂缺《代数拓扑(英文版)》作者简介
目录
INTRODUCTION
1 Set theory
2 General topology
3 Group theory
4 Modules
5 Euclidean spaces
1 HOMOTOPy AND THE FUNDAMENTAL GROUP
1 Categories
2 Functors
3 Homotopy
4 Retraction and deforma
5 H spaces
6 Suspension
7 The fundamental groupoid
8 The fundamental group Exercises
2 COVERING SPACES AND FIHHATIONS
1 Covering protections
2 The homotopy lifting property
3 Relations with the fundamental group
4 The lifting problem
5 The classification of covering protections
6 Covering transformations
7 Fiber bundles
8 Fibrations Exercises
3 POLYBEDHA
1 Simplicial complexes
2 Linearity in simpltctal complexes
3 Subdivision
4 Simplicial approximation
5 Contiguity classes
6 The edge-path groupoid
7 Graphs
8 Examples and applications Exercises
4 HOMOLOGY
1 Chain complexes
2 Chain homotopy
3 The homology of simpltctal complexes
4 Singular homology
5 Exactness
6 Mayer-Vietorls sequences
7 Some applications of homology
8 Axiomatic characterization of homology Exercises
5 PRODUCTS
6 GENERAL COHOMOLOGY THEORY AND DUALITY
7 HOMOTOPY THEORY
8 OBSTRU CTION THEORY
9 SPECTRAL SEQUENCES AND HOMOTOPY GROUPS OF SPHERES
INDEX
1 Set theory
2 General topology
3 Group theory
4 Modules
5 Euclidean spaces
1 HOMOTOPy AND THE FUNDAMENTAL GROUP
1 Categories
2 Functors
3 Homotopy
4 Retraction and deforma
5 H spaces
6 Suspension
7 The fundamental groupoid
8 The fundamental group Exercises
2 COVERING SPACES AND FIHHATIONS
1 Covering protections
2 The homotopy lifting property
3 Relations with the fundamental group
4 The lifting problem
5 The classification of covering protections
6 Covering transformations
7 Fiber bundles
8 Fibrations Exercises
3 POLYBEDHA
1 Simplicial complexes
2 Linearity in simpltctal complexes
3 Subdivision
4 Simplicial approximation
5 Contiguity classes
6 The edge-path groupoid
7 Graphs
8 Examples and applications Exercises
4 HOMOLOGY
1 Chain complexes
2 Chain homotopy
3 The homology of simpltctal complexes
4 Singular homology
5 Exactness
6 Mayer-Vietorls sequences
7 Some applications of homology
8 Axiomatic characterization of homology Exercises
5 PRODUCTS
6 GENERAL COHOMOLOGY THEORY AND DUALITY
7 HOMOTOPY THEORY
8 OBSTRU CTION THEORY
9 SPECTRAL SEQUENCES AND HOMOTOPY GROUPS OF SPHERES
INDEX
猜您喜欢