书籍详情

自动控制原理与设计(英文版·第5版)

自动控制原理与设计(英文版·第5版)

作者:Gene F.Franklin, J.David Powell, Abbas Emami-Naeini

出版社:人民邮电出版社

出版时间:2007-07-01

ISBN:9787115158536

定价:¥69.00

购买这本书可以去
内容简介
  《自动控制原理与设计(英文版·第5版)》是自动控制领域的名著,内容紧密围绕自动控制系统的分析与设计理论展开,主要介绍了自动控制的动态模型、动态响应、基本特性,着重介绍了自动控制的几种常规设计技术,还涉及了非线性系统的分析与设计,并穿插了许多自动控制在MATLAB下的仿真实例。《自动控制原理与设计(英文版·第5版)》可作为高等院校自动控制及相关专业的高年级本科生和研究生的教材,还可供有关专业的教师、研究人员及从事自动控制相关工作的工程技术人员参考。
作者简介
  Gene F.Franklin,斯坦福大学电气工程系教授,国际著名控制学家,IEEE终身会士。他于1955年在哥伦比亚大学获得博士学位,曾任斯坦福大学电气工程系主任、IEEE控制系统学会理事、副主席,其研究领域覆盖了控制的各个方面。2005年因其对多个控制领域的基础性贡献而荣获美国自动控制学会的最高奖Bellman奖。
目录
1 An Overview and Brief History of Feedback Control        1
A Perspective on Feedback Control                1
Chapter Overview                1
1.1 A Simple Feedback System                2
1.2 A First Analysis of Feedback                5
1.3 A Brief History                7
1.4 An Overview of the Book                12
Summary                13
End-of-Chapter Questions                14
Problems                14
2 Dynamic Models        17
A Perspective on Dynamic Models                17
Chapter Overview                17
2.1 Dynamics of Mechanical Systems                18
2.2 Models of Electric Circuits                28
2.3 Models of Electromechanical Systems                31
▲2.4 Heat and Fluid-Flow Models                36
▲2.5 Complex Mechanical Systems                45
Summary                49
End-of-Chapter Questions                49
Problems                50
3 Dynamic Response                58
A Perspective on System Response                58
Chapter Overview                58
3.1 Review of Laplace Transforms                58
3.2 System Modeling Diagrams        80
3.3 Effect of Pole Locations        84
3.4 Time-Domain Specifications        90
3.5 Effects of Zeros and Additional Poles        94
3.6 Amplitude and Time Scaling        98
3.7 Stability        100
▲3.8 Obtaining Models from Experimental Data        108
▲3.9 Mason’s Rule and the Signal-Flow Graph        109
Summary         112
End-of-Chapter Questions        113
Problems        114
4 Basic Properties of Feedback        127
A Perspective on the Properties of Feedback        127
Chapter Overview        127
4.1 The Basic Equations of Control        128
4.2 Control of Steady-State Error: System Type        134
4.3 Control of Dynamic Error: PID Control        142
▲4.4 Extensions to the Basic Feedback Concepts        146
Summary         160
End-of-Chapter Questions        161
Problems        161
5 The Root-Locus Design Method        177
A Perspective on the Root-Locus Design Method        177
Chapter Overview        177
5.1 Root Locus of a Basic Feedback System        178
5.2 Guidelines for Sketching a Root Locus        182
5.3 Selected Illustrative Root Loci        191
5.4 Selecting the Parameter Value        201
5.5 Design Using Dynamic Compensation        203
5.6 A Design Example Using the Root Locus        210
5.7 Extensions of the Root-Locus Method        215
Summary         222
End-of-Chapter Questions        223
Problems        224
6 The Frequency-Response Design Method        239
A Perspective on the Frequency-Response Design Method        239
Chapter Overview        239
6.1 Frequency Response        240
6.2 Neutral Stability        256
6.3 The Nyquist Stability Criterion        258
6.4 Stability Margins        267
6.5 Bode’s Gain–Phase Relationship        272
6.6 Closed-Loop Frequency Response        275
6.7 Compensation        276
▲6.8 Alternative Presentations of Data        295
▲6.9 Specifications in Terms of the Sensitivity Function        299
▲6.10 Time Delay        305
Summary          307
End-of-Chapter Questions        309
Problems        310
7 State-Space Design        329
A Perspective on State-Space Design        329
Chapter Overview        329
7.1 Advantages of State Space        330
7.2 System Description in State Space        331
7.3 Block Diagrams and State Space        336
7.4 Analysis of the State Equations        339
7.5 Control-Law Design for Full-State Feedback        355
7.6 Selection of Pole Locations for Good Design        366
7.7 Estimator Design        374
7.8 Compensator Design: Combined Control Law and Estimator        385
7.9 Introduction of the Reference Input with the Estimator        396
7.10 Integral Control and Robust Tracking        406
▲7.11 Loop Transfer Recovery (LTR)        420
▲7.12 Direct Design with Rational Transfer Functions        424
▲7.13 Design for Systems with Pure Time Delay        427
Summary            431
End-of-Chapter Questions        432
Problems        434
8 Digital Control        452
A Perspective on Digital Control        452
Chapter Overview        452
8.1 Digitization        452
8.2 Dynamic Analysis of Discrete Systems        454
8.3 Design Using Discrete Equivalents        460
8.4 Hardware Characteristics        468
8.5 Sample-Rate Selection        471
▲8.6 Discrete Design        473
▲8.7 State-Space Design Methods        479
Summary            485
End-of-Chapter Questions        486
Problems        487
9 Nonlinear Systems        497
Perspective on Nonlinear Systems        497
Chapter Overview        497
9.1 Introduction and Motivation: Why Study Nonlinear Systems?        498
9.2 Analysis by Linearization        499
9.3 Equivalent Gain Analysis Using the Root Locus        505
9.4 Equivalent Gain Analysis Using Frequency Response: Describing
Functions        513
▲9.5 Analysis and Design Based on Stability        522
Summary          537
End-of-Chapter Questions        537
Problems        538
10 Control System Design: Principles and Case Studies        545
A Perspective on Design Principles        545
Chapter Overview        545
10.1 An Outline of Control Systems Design        545
10.2 Design of a Satellite’s Attitude Control        550
10.3 Lateral and Longitudinal Control of a Boeing 747        561
10.4 Control of the Fuel–Air Ratio in an Automotive Engine        574
10.5 Control of the Read/Write Head Assembly of a Hard Disk        580
10.6 Control of Rapid Thermal Processing (RTP) Systems in Semiconductor Wafer Manufacturing        586
Summary          597
End-of-Chapter Questions        599
Problems        599
Appendix A1 Laplace Transforms        610
A.1 The L-Laplace Transform        610
A.2 Final Value Theorem        620
Appendix B A Review of Complex Variables        622
B.1 Definition of a Complex Number        622
B.2 Algebraic Manipulations        623
B.3 Graphical Evaluation of Magnitude and Phase        625
B.4 Differentiation and Integration        625
B.5 Euler’s Relations        626
B.6 Analytic Functions        626
B.7 Cauchy’s Theorem        626
B.8 Singularities and Residues        627
B.9 Residue Theorem        628
B.10 The Argument Principle        628
B.11 Bilinear Transformation        629
Appendix C Summary of Matrix Theory        631
C.1 Matrix Definitions        631
C.2 Elementary Operations on Matrices        631
C.3 Trace        632
C.4 Transpose        632
C.5 Determinant and Matrix Inverse        632
C.6 Properties of the Determinant        633
C.7 Inverse of Block Triangular Matrices        634
C.8 Special Matrices        634
C.9 Rank        635
C.10 Characteristic Polynomial        635
C.11 Cayley-Hamilton Theorem        635
C.12 Eigenvalues and Eigenvectors        635
C.13 Similarity Transformations        636
C.14 Matrix Exponential        636
C.15 Fundamental Subspaces        637
C.16 Singular-Value Decomposition        637
C.17 Positive Definite Matrices        638
C.18 Matrix Identity        638
Appendix D Controllability and Observability        639
D.1 Controllability        639
D.2 Observability        643
Appendix E Ackermann’s Formula for Pole Placement        645
Appendix F MATLAB Commands        648
Appendix G Solutions to the End-of-Chapter Questions        649
References        661
Index        668

猜您喜欢

读书导航