书籍详情
自动控制原理与设计(英文版·第5版)
作者:Gene F.Franklin, J.David Powell, Abbas Emami-Naeini
出版社:人民邮电出版社
出版时间:2007-07-01
ISBN:9787115158536
定价:¥69.00
购买这本书可以去
内容简介
《自动控制原理与设计(英文版·第5版)》是自动控制领域的名著,内容紧密围绕自动控制系统的分析与设计理论展开,主要介绍了自动控制的动态模型、动态响应、基本特性,着重介绍了自动控制的几种常规设计技术,还涉及了非线性系统的分析与设计,并穿插了许多自动控制在MATLAB下的仿真实例。《自动控制原理与设计(英文版·第5版)》可作为高等院校自动控制及相关专业的高年级本科生和研究生的教材,还可供有关专业的教师、研究人员及从事自动控制相关工作的工程技术人员参考。
作者简介
Gene F.Franklin,斯坦福大学电气工程系教授,国际著名控制学家,IEEE终身会士。他于1955年在哥伦比亚大学获得博士学位,曾任斯坦福大学电气工程系主任、IEEE控制系统学会理事、副主席,其研究领域覆盖了控制的各个方面。2005年因其对多个控制领域的基础性贡献而荣获美国自动控制学会的最高奖Bellman奖。
目录
1 An Overview and Brief History of Feedback Control 1
A Perspective on Feedback Control 1
Chapter Overview 1
1.1 A Simple Feedback System 2
1.2 A First Analysis of Feedback 5
1.3 A Brief History 7
1.4 An Overview of the Book 12
Summary 13
End-of-Chapter Questions 14
Problems 14
2 Dynamic Models 17
A Perspective on Dynamic Models 17
Chapter Overview 17
2.1 Dynamics of Mechanical Systems 18
2.2 Models of Electric Circuits 28
2.3 Models of Electromechanical Systems 31
▲2.4 Heat and Fluid-Flow Models 36
▲2.5 Complex Mechanical Systems 45
Summary 49
End-of-Chapter Questions 49
Problems 50
3 Dynamic Response 58
A Perspective on System Response 58
Chapter Overview 58
3.1 Review of Laplace Transforms 58
3.2 System Modeling Diagrams 80
3.3 Effect of Pole Locations 84
3.4 Time-Domain Specifications 90
3.5 Effects of Zeros and Additional Poles 94
3.6 Amplitude and Time Scaling 98
3.7 Stability 100
▲3.8 Obtaining Models from Experimental Data 108
▲3.9 Mason’s Rule and the Signal-Flow Graph 109
Summary 112
End-of-Chapter Questions 113
Problems 114
4 Basic Properties of Feedback 127
A Perspective on the Properties of Feedback 127
Chapter Overview 127
4.1 The Basic Equations of Control 128
4.2 Control of Steady-State Error: System Type 134
4.3 Control of Dynamic Error: PID Control 142
▲4.4 Extensions to the Basic Feedback Concepts 146
Summary 160
End-of-Chapter Questions 161
Problems 161
5 The Root-Locus Design Method 177
A Perspective on the Root-Locus Design Method 177
Chapter Overview 177
5.1 Root Locus of a Basic Feedback System 178
5.2 Guidelines for Sketching a Root Locus 182
5.3 Selected Illustrative Root Loci 191
5.4 Selecting the Parameter Value 201
5.5 Design Using Dynamic Compensation 203
5.6 A Design Example Using the Root Locus 210
5.7 Extensions of the Root-Locus Method 215
Summary 222
End-of-Chapter Questions 223
Problems 224
6 The Frequency-Response Design Method 239
A Perspective on the Frequency-Response Design Method 239
Chapter Overview 239
6.1 Frequency Response 240
6.2 Neutral Stability 256
6.3 The Nyquist Stability Criterion 258
6.4 Stability Margins 267
6.5 Bode’s Gain–Phase Relationship 272
6.6 Closed-Loop Frequency Response 275
6.7 Compensation 276
▲6.8 Alternative Presentations of Data 295
▲6.9 Specifications in Terms of the Sensitivity Function 299
▲6.10 Time Delay 305
Summary 307
End-of-Chapter Questions 309
Problems 310
7 State-Space Design 329
A Perspective on State-Space Design 329
Chapter Overview 329
7.1 Advantages of State Space 330
7.2 System Description in State Space 331
7.3 Block Diagrams and State Space 336
7.4 Analysis of the State Equations 339
7.5 Control-Law Design for Full-State Feedback 355
7.6 Selection of Pole Locations for Good Design 366
7.7 Estimator Design 374
7.8 Compensator Design: Combined Control Law and Estimator 385
7.9 Introduction of the Reference Input with the Estimator 396
7.10 Integral Control and Robust Tracking 406
▲7.11 Loop Transfer Recovery (LTR) 420
▲7.12 Direct Design with Rational Transfer Functions 424
▲7.13 Design for Systems with Pure Time Delay 427
Summary 431
End-of-Chapter Questions 432
Problems 434
8 Digital Control 452
A Perspective on Digital Control 452
Chapter Overview 452
8.1 Digitization 452
8.2 Dynamic Analysis of Discrete Systems 454
8.3 Design Using Discrete Equivalents 460
8.4 Hardware Characteristics 468
8.5 Sample-Rate Selection 471
▲8.6 Discrete Design 473
▲8.7 State-Space Design Methods 479
Summary 485
End-of-Chapter Questions 486
Problems 487
9 Nonlinear Systems 497
Perspective on Nonlinear Systems 497
Chapter Overview 497
9.1 Introduction and Motivation: Why Study Nonlinear Systems? 498
9.2 Analysis by Linearization 499
9.3 Equivalent Gain Analysis Using the Root Locus 505
9.4 Equivalent Gain Analysis Using Frequency Response: Describing
Functions 513
▲9.5 Analysis and Design Based on Stability 522
Summary 537
End-of-Chapter Questions 537
Problems 538
10 Control System Design: Principles and Case Studies 545
A Perspective on Design Principles 545
Chapter Overview 545
10.1 An Outline of Control Systems Design 545
10.2 Design of a Satellite’s Attitude Control 550
10.3 Lateral and Longitudinal Control of a Boeing 747 561
10.4 Control of the Fuel–Air Ratio in an Automotive Engine 574
10.5 Control of the Read/Write Head Assembly of a Hard Disk 580
10.6 Control of Rapid Thermal Processing (RTP) Systems in Semiconductor Wafer Manufacturing 586
Summary 597
End-of-Chapter Questions 599
Problems 599
Appendix A1 Laplace Transforms 610
A.1 The L-Laplace Transform 610
A.2 Final Value Theorem 620
Appendix B A Review of Complex Variables 622
B.1 Definition of a Complex Number 622
B.2 Algebraic Manipulations 623
B.3 Graphical Evaluation of Magnitude and Phase 625
B.4 Differentiation and Integration 625
B.5 Euler’s Relations 626
B.6 Analytic Functions 626
B.7 Cauchy’s Theorem 626
B.8 Singularities and Residues 627
B.9 Residue Theorem 628
B.10 The Argument Principle 628
B.11 Bilinear Transformation 629
Appendix C Summary of Matrix Theory 631
C.1 Matrix Definitions 631
C.2 Elementary Operations on Matrices 631
C.3 Trace 632
C.4 Transpose 632
C.5 Determinant and Matrix Inverse 632
C.6 Properties of the Determinant 633
C.7 Inverse of Block Triangular Matrices 634
C.8 Special Matrices 634
C.9 Rank 635
C.10 Characteristic Polynomial 635
C.11 Cayley-Hamilton Theorem 635
C.12 Eigenvalues and Eigenvectors 635
C.13 Similarity Transformations 636
C.14 Matrix Exponential 636
C.15 Fundamental Subspaces 637
C.16 Singular-Value Decomposition 637
C.17 Positive Definite Matrices 638
C.18 Matrix Identity 638
Appendix D Controllability and Observability 639
D.1 Controllability 639
D.2 Observability 643
Appendix E Ackermann’s Formula for Pole Placement 645
Appendix F MATLAB Commands 648
Appendix G Solutions to the End-of-Chapter Questions 649
References 661
Index 668
A Perspective on Feedback Control 1
Chapter Overview 1
1.1 A Simple Feedback System 2
1.2 A First Analysis of Feedback 5
1.3 A Brief History 7
1.4 An Overview of the Book 12
Summary 13
End-of-Chapter Questions 14
Problems 14
2 Dynamic Models 17
A Perspective on Dynamic Models 17
Chapter Overview 17
2.1 Dynamics of Mechanical Systems 18
2.2 Models of Electric Circuits 28
2.3 Models of Electromechanical Systems 31
▲2.4 Heat and Fluid-Flow Models 36
▲2.5 Complex Mechanical Systems 45
Summary 49
End-of-Chapter Questions 49
Problems 50
3 Dynamic Response 58
A Perspective on System Response 58
Chapter Overview 58
3.1 Review of Laplace Transforms 58
3.2 System Modeling Diagrams 80
3.3 Effect of Pole Locations 84
3.4 Time-Domain Specifications 90
3.5 Effects of Zeros and Additional Poles 94
3.6 Amplitude and Time Scaling 98
3.7 Stability 100
▲3.8 Obtaining Models from Experimental Data 108
▲3.9 Mason’s Rule and the Signal-Flow Graph 109
Summary 112
End-of-Chapter Questions 113
Problems 114
4 Basic Properties of Feedback 127
A Perspective on the Properties of Feedback 127
Chapter Overview 127
4.1 The Basic Equations of Control 128
4.2 Control of Steady-State Error: System Type 134
4.3 Control of Dynamic Error: PID Control 142
▲4.4 Extensions to the Basic Feedback Concepts 146
Summary 160
End-of-Chapter Questions 161
Problems 161
5 The Root-Locus Design Method 177
A Perspective on the Root-Locus Design Method 177
Chapter Overview 177
5.1 Root Locus of a Basic Feedback System 178
5.2 Guidelines for Sketching a Root Locus 182
5.3 Selected Illustrative Root Loci 191
5.4 Selecting the Parameter Value 201
5.5 Design Using Dynamic Compensation 203
5.6 A Design Example Using the Root Locus 210
5.7 Extensions of the Root-Locus Method 215
Summary 222
End-of-Chapter Questions 223
Problems 224
6 The Frequency-Response Design Method 239
A Perspective on the Frequency-Response Design Method 239
Chapter Overview 239
6.1 Frequency Response 240
6.2 Neutral Stability 256
6.3 The Nyquist Stability Criterion 258
6.4 Stability Margins 267
6.5 Bode’s Gain–Phase Relationship 272
6.6 Closed-Loop Frequency Response 275
6.7 Compensation 276
▲6.8 Alternative Presentations of Data 295
▲6.9 Specifications in Terms of the Sensitivity Function 299
▲6.10 Time Delay 305
Summary 307
End-of-Chapter Questions 309
Problems 310
7 State-Space Design 329
A Perspective on State-Space Design 329
Chapter Overview 329
7.1 Advantages of State Space 330
7.2 System Description in State Space 331
7.3 Block Diagrams and State Space 336
7.4 Analysis of the State Equations 339
7.5 Control-Law Design for Full-State Feedback 355
7.6 Selection of Pole Locations for Good Design 366
7.7 Estimator Design 374
7.8 Compensator Design: Combined Control Law and Estimator 385
7.9 Introduction of the Reference Input with the Estimator 396
7.10 Integral Control and Robust Tracking 406
▲7.11 Loop Transfer Recovery (LTR) 420
▲7.12 Direct Design with Rational Transfer Functions 424
▲7.13 Design for Systems with Pure Time Delay 427
Summary 431
End-of-Chapter Questions 432
Problems 434
8 Digital Control 452
A Perspective on Digital Control 452
Chapter Overview 452
8.1 Digitization 452
8.2 Dynamic Analysis of Discrete Systems 454
8.3 Design Using Discrete Equivalents 460
8.4 Hardware Characteristics 468
8.5 Sample-Rate Selection 471
▲8.6 Discrete Design 473
▲8.7 State-Space Design Methods 479
Summary 485
End-of-Chapter Questions 486
Problems 487
9 Nonlinear Systems 497
Perspective on Nonlinear Systems 497
Chapter Overview 497
9.1 Introduction and Motivation: Why Study Nonlinear Systems? 498
9.2 Analysis by Linearization 499
9.3 Equivalent Gain Analysis Using the Root Locus 505
9.4 Equivalent Gain Analysis Using Frequency Response: Describing
Functions 513
▲9.5 Analysis and Design Based on Stability 522
Summary 537
End-of-Chapter Questions 537
Problems 538
10 Control System Design: Principles and Case Studies 545
A Perspective on Design Principles 545
Chapter Overview 545
10.1 An Outline of Control Systems Design 545
10.2 Design of a Satellite’s Attitude Control 550
10.3 Lateral and Longitudinal Control of a Boeing 747 561
10.4 Control of the Fuel–Air Ratio in an Automotive Engine 574
10.5 Control of the Read/Write Head Assembly of a Hard Disk 580
10.6 Control of Rapid Thermal Processing (RTP) Systems in Semiconductor Wafer Manufacturing 586
Summary 597
End-of-Chapter Questions 599
Problems 599
Appendix A1 Laplace Transforms 610
A.1 The L-Laplace Transform 610
A.2 Final Value Theorem 620
Appendix B A Review of Complex Variables 622
B.1 Definition of a Complex Number 622
B.2 Algebraic Manipulations 623
B.3 Graphical Evaluation of Magnitude and Phase 625
B.4 Differentiation and Integration 625
B.5 Euler’s Relations 626
B.6 Analytic Functions 626
B.7 Cauchy’s Theorem 626
B.8 Singularities and Residues 627
B.9 Residue Theorem 628
B.10 The Argument Principle 628
B.11 Bilinear Transformation 629
Appendix C Summary of Matrix Theory 631
C.1 Matrix Definitions 631
C.2 Elementary Operations on Matrices 631
C.3 Trace 632
C.4 Transpose 632
C.5 Determinant and Matrix Inverse 632
C.6 Properties of the Determinant 633
C.7 Inverse of Block Triangular Matrices 634
C.8 Special Matrices 634
C.9 Rank 635
C.10 Characteristic Polynomial 635
C.11 Cayley-Hamilton Theorem 635
C.12 Eigenvalues and Eigenvectors 635
C.13 Similarity Transformations 636
C.14 Matrix Exponential 636
C.15 Fundamental Subspaces 637
C.16 Singular-Value Decomposition 637
C.17 Positive Definite Matrices 638
C.18 Matrix Identity 638
Appendix D Controllability and Observability 639
D.1 Controllability 639
D.2 Observability 643
Appendix E Ackermann’s Formula for Pole Placement 645
Appendix F MATLAB Commands 648
Appendix G Solutions to the End-of-Chapter Questions 649
References 661
Index 668
猜您喜欢