书籍详情
离散几何中的研究问题(影印版)
作者:(美)布拉斯(Brass、P.)、等
出版社:科学出版社
出版时间:2007-01-01
ISBN:9787030182920
定价:¥82.00
购买这本书可以去
内容简介
离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及重要的相关结果。本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。本书的显著特色包括:500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;每章分为内容自含的各个部分,各部分均附有详实的参考文献;为寻找论文课题的研究生提供众多研究问题;包含离散几何的一个全面综述,突出介绍离散几何研究的前沿问题和发展前景;150多幅图表;Paul Erdos生前为本书早期版本所写的序言。
作者简介
暂缺《离散几何中的研究问题(影印版)》作者简介
目录
0.Definitions and Notations
1.Density Problems for Packings and Goverings
1.1 Basic Questions and Defintions
1.2 The Least Econmical Convex Sets for Packing
1.3 The Least Economical Convex Sets for Covering
1.4 How Economical Are the Lattice Arrangemets?
1.5 Packing with Semidisks,and the Role of Symmetry
1.6 Packing Equal Dircles into Squares,Circles,Spheres
1.7 Packing Equal Circles of Squares in a Strip
1.8 The Densest Packing of Spheres
1.9 The Densest Packings of Specific Convex Bodies
1.10 Linking Packing and Covering Denstities
1.11 Sausage Problems and Catastrophes
2.Structural Packing and Covering Problems
2.1 Decomposition of Multiple Packings and Coverings
2.2 Solid and Saturated Packings and Reduced Coverings
2.3 Stable Packins and Coverings
2.4 Kissing and Neighborly Convex Bodies
2.5 Thin Packings with Many Neighbors
2.6 Permeability and Blocking Light Rays
3.Packing and Covering with Homothetic Copies
3.1 Potato Bay Problems
3.2 Covering a Convex Body with Its Homothetic Copies
3.3 Levi-Hadwiger Covering Problem and Illumination
3.4 Covering a Ball by Slabs
3.5 Point Trapping and Impassable Lattice Arrangements
4.Tilling Problems
5.Distance Problem
6.Problems on Repeated Subconfigurations
7.Incidence and Arrangement Problems
8.Problems on Points in Genral Positon
9.Graph Drawings and Geometric Graphs
10.Lattice Point Problems
11.Geometric Inequalities
12.Index
1.Density Problems for Packings and Goverings
1.1 Basic Questions and Defintions
1.2 The Least Econmical Convex Sets for Packing
1.3 The Least Economical Convex Sets for Covering
1.4 How Economical Are the Lattice Arrangemets?
1.5 Packing with Semidisks,and the Role of Symmetry
1.6 Packing Equal Dircles into Squares,Circles,Spheres
1.7 Packing Equal Circles of Squares in a Strip
1.8 The Densest Packing of Spheres
1.9 The Densest Packings of Specific Convex Bodies
1.10 Linking Packing and Covering Denstities
1.11 Sausage Problems and Catastrophes
2.Structural Packing and Covering Problems
2.1 Decomposition of Multiple Packings and Coverings
2.2 Solid and Saturated Packings and Reduced Coverings
2.3 Stable Packins and Coverings
2.4 Kissing and Neighborly Convex Bodies
2.5 Thin Packings with Many Neighbors
2.6 Permeability and Blocking Light Rays
3.Packing and Covering with Homothetic Copies
3.1 Potato Bay Problems
3.2 Covering a Convex Body with Its Homothetic Copies
3.3 Levi-Hadwiger Covering Problem and Illumination
3.4 Covering a Ball by Slabs
3.5 Point Trapping and Impassable Lattice Arrangements
4.Tilling Problems
5.Distance Problem
6.Problems on Repeated Subconfigurations
7.Incidence and Arrangement Problems
8.Problems on Points in Genral Positon
9.Graph Drawings and Geometric Graphs
10.Lattice Point Problems
11.Geometric Inequalities
12.Index
猜您喜欢