书籍详情
复分析可视化方法(英文版)
作者:(美)尼达姆 著
出版社:人民邮电出版社
出版时间:2007-02-01
ISBN:9787115155160
定价:¥79.00
购买这本书可以去
内容简介
本书是复分析领域近年来较有影响的一本著作。作者用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学之美。书中讲述的内容有几何、复变函数变换、默比乌斯变换、微分、非欧几何、复积分、柯西公式、向量场、复积分、调和函数等。.本书可作为大学本科、研究生的复分析课程教材或参考书。.“……总的说来,本书确实体现了近几十年数学教材的一个发展趋势。把最新的成就,用浅显的方法教给低年级学生。……”——齐民友(著名数学家,原武汉大学校长).“《复分析:可视化方法》对我来说首先是一个欣喜,随后便成为深得我心的一本书。Tristan Needham 运用创新、独特的几何观点,揭示复分析之美中许多令人吃惊的、未被人们认识到的方面。”——Roger Penrose(英国大物理学家).“如果你一年之内只能买一本数学书的话,那就买这一本吧。”——Mathematical Gazette(数学公报).本书是复分析领域的一部名著,开创了数学领域的可视化潮流,自首次出版以来,已重印了十多次,深受世界读者好评。作者用真正不同寻常和独具创造性的视角来阐述复分析这一经典学科,通过大量的图示使原本比较抽象的数学概念,变得直观易懂,读者在透彻理解理论的同时,还能充分领略数学之美。.Tristan Needham旧金山大学数学系教授,理学院副院长。 牛津大学博士,导师为Roger Penrose(与霍金齐名的英国物理学家)。 因本书被美国数学会授予Carl B. Allendoerfer奖。他的研究领域包括几何、复分析、数学史、广义相对论。...
作者简介
Tristan Needham,旧金山大学教授系教授,理学院副院长。牛津大学博士,导师为Roger Penrose(与霍金齐名的英国物理学家)。因本书被美国数学会授予Carl B.Allendoerfer奖。他的研究领域包括几何、复分析、数学史、广义相对论。
目录
1 Geometry and CompleX ArIthmetIc
Ⅰ IntroductIon
Ⅱ Euler's Formula
Ⅲ Some ApplIcatIons
Ⅳ TransformatIons and EuclIdean Geometry*
Ⅴ EXercIses
2 CompleX FunctIons as TransformatIons
Ⅰ IntroductIon
Ⅱ PolynomIals
Ⅲ Power SerIes
Ⅳ The EXponentIal FunctIon
Ⅴ CosIne and SIne
Ⅵ MultIfunctIons
Ⅶ The LogarIthm FunctIon
Ⅷ AVeragIng oVer CIrcles*
Ⅸ EXercIses
3 M?bIus TransformatIons and InVersIon
Ⅰ IntroductIon
Ⅱ InVersIon
Ⅲ Three Illustrative ApplIcatIons of InVersIon
Ⅳ The RIemann Sphere
Ⅴ M?bIus TransformatIons: BasIc Results
Ⅵ M?bIus TransformatIons as MatrIces*
Ⅶ VisualIzatIon and ClassIfIcatIon*
Ⅷ DecomposItIon Into 2 or 4 ReflectIons*
Ⅸ AutomorphIsms of the UnIt DIsc*
Ⅹ EXercIses
4 DIfferentIatIon: The AmplItwIst Concept
Ⅰ IntroductIon
Ⅱ A PuzzlIng Phenomenon
Ⅲ Local DescrIptIon of MappIngs In the Plane
Ⅳ The CompleX Derivative as AmplItwIst
Ⅴ Some SImple EXamples
Ⅵ Conformal = AnalytIc
Ⅶ CrItIcal PoInts
Ⅷ The Cauchy-RIemann EquatIons
Ⅸ EXercIses
5 Further Geometry of DIfferentIatIon
Ⅰ Cauchy-RIemann ReVealed
Ⅱ An IntImatIon of RIgIdIty
Ⅲ Visual DIfferentIatIon of log(z)
Ⅳ Rules of DIfferentIatIon
Ⅴ PolynomIals, Power SerIes, and RatIonal Func-tIons
Ⅵ Visual DIfferentIatIon of the Power FunctIon
Ⅶ Visual DIfferentIatIon of eXp(z) 231
Ⅷ GeometrIc SolutIon of E'= E
Ⅸ An ApplIcatIon of HIgher Derivatives: CurVa-ture*
Ⅹ CelestIal MechanIcs*
Ⅺ AnalytIc ContInuatIon*
Ⅻ EXercIses
6 Non-EuclIdean Geometry*
Ⅱ IntroductIon
Ⅱ SpherIcal Geometry
Ⅲ HyperbolIc Geometry
Ⅳ EXercIses
7 WIndIng Numbers and Topology
Ⅰ WIndIng Number
Ⅱ Hopf's Degree Theorem
Ⅲ PolynomIals and the Argument PrIncIple
Ⅳ A TopologIcal Argument PrIncIple*
Ⅴ Rouché's Theorem
Ⅵ MaXIma and MInIma
Ⅶ The Schwarz-PIck Lemma*
Ⅷ The GeneralIzed Argument PrIncIple
Ⅸ EXercIses
8 CompleX IntegratIon: Cauchy's Theorem
ⅡntroductIon
Ⅱ The Real Integral
Ⅲ The CompleX Integral
Ⅳ CompleX InVersIon
Ⅴ ConjugatIon
Ⅵ Power FunctIons
Ⅶ The EXponentIal MappIng
Ⅷ The Fundamental Theorem
Ⅸ ParametrIc EValuatIon
Ⅹ Cauchy's Theorem
Ⅺ The General Cauchy Theorem
Ⅻ The General Formula of Contour IntegratIon
Ⅻ EXercIses
9 Cauchy's Formula and Its ApplIcatIons
Ⅰ Cauchy's Formula
Ⅱ InfInIte DIfferentIabIlIty and Taylor SerIes
Ⅲ Calculus of ResIdues
Ⅳ Annular Laurent SerIes
Ⅴ EXercIses
10 Vector FIelds: PhysIcs and Topology
Ⅰ Vector FIelds
Ⅱ WIndIng Numbers and Vector FIelds*
Ⅲ Flows on Closed Surfaces*
Ⅳ EXercIses
11 Vector FIelds and CompleX IntegratIon
Ⅰ FluX and Work
Ⅱ CompleX IntegratIon In Terms of Vector FIelds
Ⅲ The CompleX PotentIal
Ⅳ EXercIses
12 Flows and HarmonIc FunctIons
Ⅰ HarmonIc Duals
Ⅱ Conformal I nVarIance
Ⅲ A Powerful ComputatIonal Tool
Ⅳ The CompleX CurVature ReVIsIted*
Ⅴ Flow Around an Obstacle
Ⅵ The PhysIcs of RIemann's MappIng Theorem
Ⅶ Dirichlet's Problem
Ⅷ ExercIses
References
IndeX
Ⅰ IntroductIon
Ⅱ Euler's Formula
Ⅲ Some ApplIcatIons
Ⅳ TransformatIons and EuclIdean Geometry*
Ⅴ EXercIses
2 CompleX FunctIons as TransformatIons
Ⅰ IntroductIon
Ⅱ PolynomIals
Ⅲ Power SerIes
Ⅳ The EXponentIal FunctIon
Ⅴ CosIne and SIne
Ⅵ MultIfunctIons
Ⅶ The LogarIthm FunctIon
Ⅷ AVeragIng oVer CIrcles*
Ⅸ EXercIses
3 M?bIus TransformatIons and InVersIon
Ⅰ IntroductIon
Ⅱ InVersIon
Ⅲ Three Illustrative ApplIcatIons of InVersIon
Ⅳ The RIemann Sphere
Ⅴ M?bIus TransformatIons: BasIc Results
Ⅵ M?bIus TransformatIons as MatrIces*
Ⅶ VisualIzatIon and ClassIfIcatIon*
Ⅷ DecomposItIon Into 2 or 4 ReflectIons*
Ⅸ AutomorphIsms of the UnIt DIsc*
Ⅹ EXercIses
4 DIfferentIatIon: The AmplItwIst Concept
Ⅰ IntroductIon
Ⅱ A PuzzlIng Phenomenon
Ⅲ Local DescrIptIon of MappIngs In the Plane
Ⅳ The CompleX Derivative as AmplItwIst
Ⅴ Some SImple EXamples
Ⅵ Conformal = AnalytIc
Ⅶ CrItIcal PoInts
Ⅷ The Cauchy-RIemann EquatIons
Ⅸ EXercIses
5 Further Geometry of DIfferentIatIon
Ⅰ Cauchy-RIemann ReVealed
Ⅱ An IntImatIon of RIgIdIty
Ⅲ Visual DIfferentIatIon of log(z)
Ⅳ Rules of DIfferentIatIon
Ⅴ PolynomIals, Power SerIes, and RatIonal Func-tIons
Ⅵ Visual DIfferentIatIon of the Power FunctIon
Ⅶ Visual DIfferentIatIon of eXp(z) 231
Ⅷ GeometrIc SolutIon of E'= E
Ⅸ An ApplIcatIon of HIgher Derivatives: CurVa-ture*
Ⅹ CelestIal MechanIcs*
Ⅺ AnalytIc ContInuatIon*
Ⅻ EXercIses
6 Non-EuclIdean Geometry*
Ⅱ IntroductIon
Ⅱ SpherIcal Geometry
Ⅲ HyperbolIc Geometry
Ⅳ EXercIses
7 WIndIng Numbers and Topology
Ⅰ WIndIng Number
Ⅱ Hopf's Degree Theorem
Ⅲ PolynomIals and the Argument PrIncIple
Ⅳ A TopologIcal Argument PrIncIple*
Ⅴ Rouché's Theorem
Ⅵ MaXIma and MInIma
Ⅶ The Schwarz-PIck Lemma*
Ⅷ The GeneralIzed Argument PrIncIple
Ⅸ EXercIses
8 CompleX IntegratIon: Cauchy's Theorem
ⅡntroductIon
Ⅱ The Real Integral
Ⅲ The CompleX Integral
Ⅳ CompleX InVersIon
Ⅴ ConjugatIon
Ⅵ Power FunctIons
Ⅶ The EXponentIal MappIng
Ⅷ The Fundamental Theorem
Ⅸ ParametrIc EValuatIon
Ⅹ Cauchy's Theorem
Ⅺ The General Cauchy Theorem
Ⅻ The General Formula of Contour IntegratIon
Ⅻ EXercIses
9 Cauchy's Formula and Its ApplIcatIons
Ⅰ Cauchy's Formula
Ⅱ InfInIte DIfferentIabIlIty and Taylor SerIes
Ⅲ Calculus of ResIdues
Ⅳ Annular Laurent SerIes
Ⅴ EXercIses
10 Vector FIelds: PhysIcs and Topology
Ⅰ Vector FIelds
Ⅱ WIndIng Numbers and Vector FIelds*
Ⅲ Flows on Closed Surfaces*
Ⅳ EXercIses
11 Vector FIelds and CompleX IntegratIon
Ⅰ FluX and Work
Ⅱ CompleX IntegratIon In Terms of Vector FIelds
Ⅲ The CompleX PotentIal
Ⅳ EXercIses
12 Flows and HarmonIc FunctIons
Ⅰ HarmonIc Duals
Ⅱ Conformal I nVarIance
Ⅲ A Powerful ComputatIonal Tool
Ⅳ The CompleX CurVature ReVIsIted*
Ⅴ Flow Around an Obstacle
Ⅵ The PhysIcs of RIemann's MappIng Theorem
Ⅶ Dirichlet's Problem
Ⅷ ExercIses
References
IndeX
猜您喜欢