书籍详情

数学物理方法(第2版)

数学物理方法(第2版)

作者:郭玉翠

出版社:清华大学

出版时间:2006-12-01

ISBN:9787302140047

定价:¥34.00

购买这本书可以去
内容简介
  本书是在北京邮电大学出版社出版的《数学物理方法(研究生用)》的基础上修订而成的.此次修订除了对一些章节的内容作了调整,以便更适合教学外,主要增加了计算机软件Maple在求解定解问题中的应用,以及用Maple将一些结果可视化的内容..全书内容分为10章,分别介绍矢量分析与场论的基础知识、数学物理定解问题的推导、求解数学物理问题的分离变量法、行波法与积分变换法、Green函数法、变分法、二阶线性常微分方程的级数解法与Sturm-Liouville本征值问题、特殊函数(一)——Legendre多项式、特殊函数(2)——Bessel函数以及积分方程的基本知识...本书从理论到实例都考虑了电子、通信类各专业的特点,兼顾数学理论的严谨性和物理背景的鲜明性,体现了数学物理方法作为数学应用于物理和其他科学的桥梁作用.本书可以作为高等学校工科硕士研究生的教材,也可以供对这门课程要求较高的专业的本科生使用,或作为教学参考书....
作者简介
暂缺《数学物理方法(第2版)》作者简介
目录
第1章矢量分析与场论初步.
1.1矢量函数及其导数与积分
1.1.1矢量函数
1.1.2矢量函数的极限与连续性
1.1.3矢量函数的导数和积分
1.2梯度.散度与旋度在正交曲线坐标系中的表达式
1.2.1直角坐标系中的“三度”及Hamilton算子
1.2.2正交曲线坐标系中的“三度”
1.2.3“三度”的运算公式
1.3正交曲线坐标系中的Laplace算符.Green第一和第二公式
1.4算子方程
第2章数学物理定解问题
2.1基本方程的建立
2.1.1均匀弦的微小横振动
2.1.2均匀膜的微小横振动
2.1.3传输线方程
2.1.4电磁场方程
2.1.5热传导方程
2.2定解条件
2.2.1初始条件
2.2.2边界条件
2.3定解问题的提法
2.4二阶线性偏微分方程的分类与化简
2.4.1.两个自变量方程的分类与化简
2.4.2常系数偏微分方程的进一步简化
2.4.3线性偏微分方程的叠加原理
第3章分离变量法
3.1(1 1)维齐次方程的分离变量法
3.1.1有界弦的自由振动
3.1.2有限长杆上的热传导
3.22维Laplace方程的定解问题
3.3高维Fourier级数及其在高维定解问题中的应用
3.4非齐次方程的解法
3.4.1固有函数法
3.4.2冲量法
3.4.3特解法
3.5非齐次边界条件的处理
第4章二阶常微分方程的级数解法本征值问题
4.1二阶常微分方程系数与解的关系
4.2二阶常微分方程的级数解法
4.2.1常点邻域内的级数解法
4.2.2正则奇点邻域内的级数解法
4.3Legendre方程的级数解
4.4Bessel方程的级数解
4.5Sturm-Liouville本征值问题
第5章特殊函数(一)Legendre多项式
5.1正交曲线坐标系中的分离变量法
5.1.1Laplace方程
5.1.2Helmholtz方程
5.2Legendre多项式及其性质
5.2.1Legendre多项式的导出
5.2.2Legendre多项式的性质
5.3Legendre多项式的应用
5.4一般球函数
5.4.1关联Legendre函数
5.4.2球函数
第6章特殊函数(--)Bessel函数
6.1Bessel函数的性质及其应用
6.1.1柱函数
6.1.2Bessel函数的性质
6.1.3修正Bessel函数
6.1.4Bessel函数的应用
6.2球Bessel函数..
6.3柱面波与球面波
6.3.1柱面波
6.3.2球面波
6.4可化为Bessel方程的方程
6.5其他特殊函数方程简介
6.5.1Hermite多项式
6.5.2Laguerre多项式
第7章行波法与积分变换法
7.1一维波动方程的d
猜您喜欢

读书导航