书籍详情

神经网络设计(英文影印版)

神经网络设计(英文影印版)

作者:(美)Martin T.Hagan,Howard B.Demuth,Mark Beale

出版社:中信出版社

出版时间:2002-05-01

ISBN:9787800734656

定价:¥69.00

内容简介
  本书清楚而详细地论述了基本的神经网络体系结构和训练方法、作者重点调了三项内容:一是神经网络的数学分析,二是神经网络的训练方法三是神经网络的工程应用——主要是在模式识别、信号处理和控制系统领域的应用。本书特点:·广泛论述了能力学习方面的内容,包括Widrow-Hoff规则、反向传播算法和一些增强的反向传播算这(例如,变梯度法,Levenberg-Marquardt动量项法)·讨论了回归互联记忆神经网络(例如.Hopfield神经网络)·给出多个解决问题的详细实例:·以简单的积木形式解释了互联神经网络和竞争神经网络(包括特征映射、学习矢量量化和自适应共振理论)。·提供了用MATLAB4.O实现的神经网络设计演示程序(包含学生版和专业版)这是一本非常优秀的著作很难见到写得这么好的书。本书无论是插图还是范例都是一流的这些插图和范例不但丰富了内容,而且还增加了直觉感。
作者简介
暂缺《神经网络设计(英文影印版)》作者简介
目录
Preface                  
 1. Introduction                  
 Objectives                  
 History                  
 Applications                  
 Biological Inspiration                  
 Further Reading                  
 2. Neuron Model and Network Architectures                  
 Objectives                  
 Theory and Examples                  
 Notation                  
 Neuron Model                  
 Single-Input Neuron                  
 Transfer Functions                  
 Multiple-Input Neuron                  
 Network Architectures                  
 A Layer of Neurons                  
 Multiple Layers of Neurons                  
 Recrrent Networks                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Exercises                  
 3. An Illustrative Example                  
 Objectives                  
 Theory and Examples                  
 Problem Statement                  
 Perceptron                  
 Two-Input Case                  
 Pattern Recognition Example                  
 Hamming Network                  
 Feedforward Layer                  
 Recurrent Layer                  
 Hopfield Network                  
 Epilogue                  
 Exercise                  
 4. Perceptron Learning Rule                  
 Objectives                  
 Theory and Examples                  
 Learning Rules                  
 Perceptron Architecture                  
 Single-Neuron Perceptron                  
 Multiple-Neuron Perceptron                  
 Perceptron Learning Rule                  
 Test Problem                  
 Constructing Learning Rules                  
 Unified Learning Rule                  
 Training Multiple-Neuron Perceptrons                  
 Proof of Convergence                  
 Notation                  
 Proof                  
 Limitations                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 5. Signal and Weight Vector Spaces                  
 Objectives                  
 Theory and Examples                  
 Linear Vector Spaces                  
 Linear independence                  
 Spanning a Space                  
 Inner Product                  
 Norm                  
 Orthogonality                  
 Gram-Schmidt Orthogonalization                  
 Vector Expansions                  
 Reciprocal Basis Vectors                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 6. Linear Transformations for Neural Networks                  
 Objectives                  
 Theory and Examples                  
 Linear Transformations                  
 Matrix Representations                  
 Change of Basis                  
 Eigenvalues and Eigenvectors                  
 Diagonalization                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 7. Supervised Hebbian Learning                  
 Objectives                  
 Theory and Examples                  
 Linear Associator                  
 The Hebb Rule                  
 Performance Analysis                  
 Pseudoinverse Rule                  
 Application                  
 Variations of Hebbian Learning                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 8. Performance Surfaces and Optimum Points                  
 Objectives                  
 Theory and Examples                  
 Taylor Series                  
 Vector Case                  
 Directional Derivatives                  
 Minima                  
 Necessary Conditions for Optimality                  
 First-Order Conditions                  
 Second-Order Conditions                  
 Quadratic Functions                  
 Eigensystem of the Hessian                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 9. Performance Optimization                  
 Objectives                  
 Theory and Examples                  
 Steepest Descent                  
 Stable Learning Rates                  
 Minimizing Along a Line                  
 Newton's Method                  
 Conjugate Gradient                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 10. Widrow-Hoff Learning                  
 Objectives                  
 Theory and Examples                  
 ADALINE Network                  
 Single ADALINE                  
 Mean Square Error                  
 LMS Algorithm                  
 Analysis of Convergence                  
 Adaptive Filtering                  
 Adaptive Noise Cancellation                  
 Echo Cancellation                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 11. Backpropagation                  
 Objectives                  
 Theory and Examples                  
 Multilayer Perceptrons                  
 Pattern Classification '                  
 Function Approximation                  
 The Backpropagation Algorithm                  
 Performance Index                  
 Chain Rule                  
 Backpropagating the Sensitivities                  
 Summary '                  
 Example                  
 Using Backpropagation                  
 Choice of Network Architecture                  
 Convergence                  
 Generalization                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 12. Variations on Backpropagation                  
 Objectives                  
 Theory and Examples                  
 Drawbacks of Backpropagation                  
 Performance Surface Example                  
 Convergence Example                  
 Heuristic Modifications of Backpropagation                  
 Momentum                  
 Variable Learning Rate                  
 Numerical Optimization Techniques                  
 Conjugate Gradient                  
 Levenberg-Marquardt Algorithm                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 13. Assoeiative Learning                  
 Objectives                  
 Theory and Examples                  
 Simple Associative Network                  
 Unsupervised Hebb Rule                  
 Hebb Rule with Decay                  
 Simple Recognition Network                  
 Instar Rule                  
 Kohonen Rule                  
 Simple Recall Network                  
 Outstar Rule                  
 Summary of Results                  
 Solved Problems .                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 14. Competitive Networks                  
 Objectives                  
 Theory and Examples                  
 Hamming Network                  
 Layer 1                  
 Layer 2                  
 Competitive Layer                  
 Competitive Learning                  
 Problems with Competitive Layers                  
 Competitive Layers in Biology                  
 Self-Organizing Feature Maps                  
 Improving Feature Maps                  
 Learning Vector Quantization                  
 LVQ Learning                  
 Improving LVQ Networks (LVQ2)                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 15. Grossberg Network                  
 Objectives                  
 Theory and Examples                  
 Biological Motivation: Vision                  
 Illusions                  
 Vision Normalization                  
 Basic Nonlinear Model                  
 Two-Layer Competitive Network                  
 Layer 1                  
 Layer 2                  
 Choice of Transfer Function                  
 Learning Law                  
 Relation to Kohonen Law                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 16. Adaptive Resonance Theory                  
 Objectives                  
 Theory and Examples                  
 Overview of Adaptive Resonance                  
 Layer 1                  
 Steady State Analysis '                  
 Layer 2                  
 Orienting Subsystem                  
 Learning Law: LI-L2                  
 Subset/Superset Dilemma                  
 Learning Law                  
 Learning Law: L2-LI                  
 ARTI Algorithm Summary                  
 Initialization                  
 Algorithm                  
 Other ART Architectures                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 17. Stability                  
 Objectives                  
 Theory and Examples                  
 Recurrent Networks                  
 Stability Concepts                  
 Definitions                  
 Lyapunov Stability Theorem                  
 Pendulum Example                  
 LaSalle's Invariance Theorem                  
 Definitions                  
 Theorem                  
 Example                  
 Comments                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 18. Hopfield Network                  
 Objectives                  
 Theory and Examples                  
 Hopfield Model                  
 Lyapunov Function                  
 Invariant Sets                  
 Example                  
 Hopfield Attractors                  
 Effect of Gain                  
 Hopfield Design                  
 Content-Addressable Memory                  
 Hebb Rule                  
 Lyapunov Surface                  
 Summary of Results                  
 Solved Problems                  
 Epilogue                  
 Further Reading                  
 Exercises                  
 19. Epilogue                  
 Objectives                  
 Theory and Examples                  
 Feedforward and Related Networks                  
 Competitive Networks                  
 Dynamic Associative Memory Networks                  
 Classical Foundations of Neural Networks                  
 Books and Journals                  
 Epilogue                  
 Further Reading                  

猜您喜欢

读书导航