书籍详情
数字通信导论(英文版第2版)
作者:(美国)兹默等著
出版社:机械工业出版社
出版时间:2003-09-01
ISBN:9787111134718
定价:¥89.00
购买这本书可以去
内容简介
本书全面、深入地介绍了数字通信系统的基础理论和应用,内容包括数字调制和编码的基本理论以及频谱扩展通信、蜂窝式无线电通信和卫星通信等专业知识,并自始至终强调计算机模拟的应用。 全书内容精练。层次合理、论述清晰,并附有大量实例和习题,是高等院校通信,计算机及相关专业高年级本科生和低年级研究生的理想教材,对专业通信工程师也是很有价值的参考书。 本书介绍了在现实世界中,当处于重要位置上的网络设备遭到攻击,而又不能总是得到所需要的支持时.如何保障企业网络的安全。 Allan Liska是Symantec公司的安全工程师和UUNet公司的前网络架构师,他致力于网络安全的各方面的研究工作:从风险管理分析到访问控制,从Web/Email安全到日常的监控。他系统地分析了当今网络中最普遍的安全错误和安全脆弱性,并提供了可立即投入使用的实际解决方案。本书的内容包括:定量的安全风险分析并“推销”安全的重要性定义反映公司特点的安全模型将安全模型转换成有效的、可实施的策略使路由器和交换机成为网络防护的第一道防线通过验证、授权和审计进行访问控制配置安全的VPN和远程访问保护无线LAN和WAN在企业网络和公共Internet之间建立DMZ保护Web/应用服务器、DNS服务器、Email服务器和文件/打印服务器执行有效的日常网络安全管理、监控和记录日志攻击响应:检测、隔离、阻止、报告和起诉从始至终,作者把这些安全技术融合成案例的形式进行研究,向读者展示了如何将不安全的企业 网重新设计成最安全的网络。
作者简介
RodgerE.Ziemer毕业于明尼苏达大学,获博士学位,现任科罗拉多大学电子和计算机工程系教授。研究方向是数字通信(包括扩展频谱通信、蜂窝式无线电通信和卫星通信)以及通信的信号处理等。相关图书计算机体系结构:量化研究方法:第3版调和分析导论(英文第三版)人工智能:智能系统指南(英文版)第二版机器视觉教程(英文版)(含盘)支持向量机导论(英文版)Java教程(英文版·第2版)软件需求管理:用例方法(英文版·第2版)UML参考手册(英文版·第2版)计算理论导引UNIX教程(英文版·第2版)软件测试(英文版第2版)设计模式精解(英文版第2版)实分析和概率论-经典原版书库(英文版.第2版)软件过程改进(英文版)80X86汇编语言与计算机体系结构计算机科学概论(英文版·第2版)分布式系统概念设计电力系统分析(英文版·第2版)面向计算机科学的数理逻辑:系统建模与推理(英文版·第2版)数学规划导论英文版抽样理论与方法(英文版)Java2专家导引(英文版·第3版)复分析基础及工程应用(英文版.第3版)电子设计自动化基础(英文版)Java程序设计导论(英文版·第5版)数据挖掘:实用机器学习技术(英文版·第2版)UML参考手册(第2版)离散事件系统仿真(英文版·第4版)复杂SoC设计(英文版)基于FPGA的系统设计(英文版)实用软件工程(英文版)计算机取证(英文版)EffectiveC#(英文版)基于用例的面向方面软件开发(英文版)Linux内核编程必读-经典原版书库
目录
Preface
1 Introduction to Digital Data Transmission
1.1 Introduction
1.2 Components of a Digital Communication System
1.2.1 General Considerations
1.2.2 Subsystems in a Typical Communication System
1.2.3 Capacity of a Communications Link
1.3 Communications Channel Modeling
1.3.1 Introduction
1.3.2 Specific Examples of Communication Channels
1.3.2.1 Propagation Channels
1.3.2.2 Land Line
1.3.2.3 Compact Disc (CD) Channels
1.3.3 Approaches to Communication Channel Modeling
1.3.3.1 Discrete Channel Approach
1.3.3.2 Waveform Description
of Communication Channels
1.3.4 Interference and Distortion in Communication
Channels
1.3.5 External Channel Propagation Considerations
1.4 Communication Link Power Calculations
1.4.1 Decibels in Communication System
Performance Calculations
1.4.2 Calculation of Power Levels in Communication
Systems; Link Budgets
1.5 Driving Forces in Communications
1.6 Computer Use in Communication System Analysis and Design
1.7 Preview of the Book
References
Problems
2 Signals, Systems, Modulation, and Noise: Overview
2.1 Review of Signal and Linear System Theory
2.1.1 Introduction
2.1.2 Classification of Signals
2.1.3 Fundamental Properties of Systems
2.1.4 Complex Exponentials as Eigenfunctions
for a Fixed, Linear System; Frequency
Response Function
2.1.5 Orthogonal Function Series
2.1.6 Complex Exponential Fourier Series
2.1.7 The Fourier Transform
2.1.8 Signal Spectra
2.1.9 Energy Relationships
2.1.10 System Analysis
2.2 Basic Analog Modulation Techniques
2.2.1 Double-Sideband Modulation
2.2.2 The Hilbert Transform; Single-Sideband Modulation
2.2.3 Angle Modulation
2.3 Complex Envelope Representation of Bandpass Signals
and Systems
2.3.1 Bandpass Signals
2.3.2 Bandpass Systems
2.4 Signal Distortion and Filtering
2.4.1 Distortionless Transmission and Ideal Filters
2.4.2 Group and Phase Delay
2.4.3 Nonlinear Systems and Nonlinear Distortion
2.5 Practical Filter Types and Characteristics
2.5.1 General Terminology
2.5.2 Butterworth Filters (Maximally Flat)
2.5.3 Chebyshev Filters (Equal Ripple)
2.5.4 Bessel (Maximally Flat Delay) Filters
2.6 Sampling Theory
2.6.1 The Lowpass Sampling Theorem
2.6.2 Nonideal Effects in Sampling
2.6.3 Sampling of Bandpass Signals
2.6.4 Oversampling and Downsamplingto Ease
Filter Requirements
2.6.5 Pulse Code Modulation
2.6.6 Differential Pulse Code Modulation
2.7 Random Processes
2.7.1 Mathematical Description of Random Processes
2.7.2 Input-Output Relationships for Fixed Linear Systems
with Random Inputs; Power Spectral Density
2.7.2.1 Partial Descriptions
2.7.2.2 Output Statistics of Linear Systems
2.7.2.3 The Central and Noncentral Chi-Square
Distributions
2.7.3 Examples of Random Processes
2.7.4 Narrowband Noise Representation
2.7.5 Distributions of Envelopes of Narrowband
Gaussian Processes
2.8 Computer Generation of Random Variables
2,8.1 Introduction
2.8.2 Generation of Random Variables Having
a Specific Distribution
2.8.3 Spectrum of a Simulated White Noise Process
2.8.4 Generation of Pseudo-Noise Sequences
2.9 Summary
References
Problems
3 Basic Digital Communication Systems
3.1 Introduction
3.2 The Binary Digital Communications Problem
3.2.1 Binary Signal Detection in AWGN
3.2.2 The Matched Filter
3.2.3 Application of the Matched Filter to Binary
Data Detection
3.2.3.1 General Formula for PE
3.2.3.2 Antipodal Baseband Signaling
3.2.3.3 Baseband Orthogonal Signaling
3.2.3.4 Baseband On-Off Signaling
3.2.4 Correlator Realization of Matched Filter Receivers
3.3 Signaling Through Bandlimited Channels
3.3.1 System Model
3.3.2 Designing for Zero ISI: Nyquist's Pulse-Shaping
Criterion
3.3.3 Optimum Transmit and Receive Filters
3.3.4 Shaped Transmit Signal Spectra
3.3.5 Duobinary Signaling
3.4 Equalization in Digital Data Transmission
3.4.1 Introduction
3.4.2 Zero-Forcing Equalizers
3.4.3 Minimum Mean-Square Error Equalization
3.4.4 Adaptive Weight Adjustment
3.4.5 Other Equalizer
3.4.8 Equalizer Performance
3.5 A Digital Communication System Simulation, Example
3.6 Noise Effects in Pulse Code Modulation
3.7 Summary
References
Problems
4 Signal-Space Methods in Digital Data Transmission
4.1 Introduction
4.2 Optimum Receiver Principals in Terms of Vector Spaces
4.2.1 Maximum a Posteriori Detectors
4.2.2 Vector Representation of Signals
4.2.2.1 K-Dimensional Signal Space
Representation of the Received Waveform
4.2.2.2 Scalar Product
4.2.2.3 Gram-Schmidt Procedure
4.2.2.4 Schwarz's Inequality
4.2.2.5 Parseval's Theorem
4.2.3 MAP Detectors in Terms of Signal Spaces
4.2.4 Performance Calculations for MAP Receivers
4.3 Performance Analysis of Coherent Digital Signaling Schemes
4.3.1 Coherent Binary Systems
4.3.2 Coherent Mary Orthogonal Signal Schemes
4.3.3 M-ary Phase-Shift Keying
4.3.4 Quadrature-Amplitude Modulation
4.4 Signaling Schemes Not Requiring Coherent References
at the Receiver
4.4.1 Noncoherent Frequency-Shift Keying (NFSK)
4.4.2 Differential Phase-Shift Keying (DPSK)
4.5 Comparison of Digital Modulation Systems
4.5.1 Bit Error Probabilities from Symbol
Error Probabilities
4.5.2 Bandwidth Efficiencies of Mary Digital
Communication Systems
4.6 Comparison of M-ary Digital Modulation Schemes
on Power and Bandwidth-Equivalent Bases
4.6.1 Coherent Digital Modulation Schemes
4.6.2 Noncoherent Digital Modulation Schemes
4.7 Some Commonly Used Modulation Schemes
4.7.1 Quadrature-Multiplexed Signaling Schemes
4.7.1.1 Quadrature Multiplexing
4.7.1.2 Quadrature and Offset-Quadrature
Phase-Shift Keying
4.7.3.1 Minimum-Shift Keying
4.7.1.4 Performance of Digital Quadrature
Modulation Systems
4.7.2 Gausslan MSK
4.7.3 /4-Differential QPSK
4.7.4 Power Spectra for Quadrature Modulation Schemes
4.8 Design Examples and System Tradeoffs
4.9 Multi-h Continuous Phase Modulation
4.9.1 Description of the Multi-h CPM Signal Format
4.9.2 Calculation of Power Spectra for Multi-h CPM Signals
4.9.3 Synchronization Considerations for Multi-h
CPM Signals
4.10 Orthogonal Frequency Division Multiplexing
4.10.1 Introduction
4.10.2 The Idea behind OFDM
4.10.3 Mathematical Description of DFT-Implemented
OFDM
4.10.4 Effect of Fading on OFDM Detection
4.10.5 Parameter Choices and Implementation Issues
in OFDM
4.10.5.1 OFDM Symbol Rate for Combating
Delay Spread
4.10.5.2 Realizing Diversity in OFDM
4,10.5.3 Implementation Issues
4.10.6 Simulation of OFDM Waveforms
4.11 Summary
References
Problems
5 Channel Degradations in Digital Communications
5.1 Introduction
5.2 Synchronization in Communication Systems
5.2.1 Carrier Synchronization
5.2.2 Symbol Synchronization
5.2.3 Frame Synchronization
5.3 The Effects of Slow Signal Fading in Communication Systems
5.3.1 Performance of Binary Modulation Schemes
in Rayleigh Fading Channels
5.3.1.1 Introduction
5.3.1.2 Bit Error Probability Performance
in Slow Rayleigh Fading
5.3.1.3 The Use of Path Diversity to Improve
Performance in Fading
5.3.1.4 DPSK Performance in Moderately
5.3.2 Performance of M-ary Modulation Schemes
in Slow Fading
5.3.2.1 Introduction
5.3.2.2 M-ary PSK and DPSK Performance
in Slow Rayleigh Fading
5.3.2.3 M-ary PSK and DPSK Performance
in Slow Ricean Fading
5.3.2.4 M-ary QAM Performance in Slow
Rayleigh Fading
5.3.2.5 M-ary Noncoherent FSK Performance
in Slow Ricean Fading
5.3.3 M-ary PSK and DPSK Performance in Slow Fading
with Diversity
5.3.3.1 Rayleigh Fading
5.3.3.2 Ricean Fading
5.4 Diagnostic Tools for Communication System Design
5.4.1 Introduction
5.4.2 Eye Diagrams
5.4.3 Envelope Functions for Digital Modulation Methods
5.4.4 Phasor Plots for Digital Modulation Systems
5.5 Summary
References
Problems
6 Fundamentals of Information Theory and Block Coding
6.1 Introduction
6.2 Basic Concepts of Information Theory
6.2.1 Source Coding
6.2.2 LempeI-Ziv Procedures
6.2.3 Channel Coding and Capacity
6.2.3.1 General Considerations
6.2.3.2 Shannon's Capacity Formula
6.2.3.3 Capacityof Discrete Memoryless Channels
6.2.3.4 Computational Cutoff Rate
6.3 Fundamentals of Block Coding
6.3.1 Basic Concepts
6.3.3.1 Definition of a Block Code
6.3.3.2 Hamming Distance and Hamming Weight
6.3.3.3 Error Vectors
6.3.3.4 Optimum Decoding Rule
6.3.3.5 Decoding Regions and Error Probability
6.3.3.6 Coding Gain
6.3.3.7 Summary
6.3.2 Linear Codes
6.3.2.1 Modulo-2 Vector Arithmetic
6.3.2.2 Binary Linear Vector Spaces
6.3.2.3 Linear Block Codes
6.3.2.4 Systematic Linear Block Codes
6.3.2.5 Distance Properties of Linear Block Codes
6.3.2.6 Decoding Using the Standard Array
6.3.2.7 Error Probabilities for Linear Codes
6.3.3 Cyclic Codes
6.3.3.1 Definition of Cyclic Codes
6.3.3.2 Polynomial Arithmetic
6.3.3.3 Properties of Cyclic Codes
6.3.3.4 Encoding of Cyclic Codes
6.3.3.5 Decoding of Cyclic Codes
6.3.4 Hamming Codes
6.3.4.1 Definition of Hamming Codes
6.3.4.2 Encoding of Hamming Codes
6.3.4.3 Decoding of Hamming Codes
6.3.4.4 Performance of Hamming Cods
6.3.5 BCH Codes
6.3.5.1 Definition and Encoding for BCH Codes
6.3.5.2 Decoding of BCH Codes
6.3.5.3 Performance of BCH Codes
6.3.6 Reed-Solomon Codes
6.3.6.1 Definition of Reed-Solomon Codes
6.3.6.2 Decoding the Reed-Solomon Codes
6.3.6.3 Performance of the Reed-Solomon Codes
6.3.7 The Golay Code
6.3.7.1 Definition of the Golay Code
6.3.7.2 Decoding the Golay Code
6.3.7.3 Performance of the Golay Code
6.4 Coding Performance in Slow Fading Channels
6.5 Summary
References
Problems
Fundamentals of Convolutional Coding
7.1 Introduction
7.2 Basic Concepts
7.2.1 Definition of Convolutional Codes
7.2.2 Decoding Convolutional Codes
7.2.3 Potential Coding Gains for Soft Decisions
7.2.4 Distance Properties of Convolutional Codes
7.3 The Viterbi Algorithm
7.3.1 Hard Decision Decoding
7.3.2 Soft Decision Decoding
7.3.3 Decoding Error Probability
7.3.4 Bit Error Probability
7.4 Good Convolutional Codes and Their Performance
7.5 Other Topics
7.5.1 Sequential Decoding
7.5.2 Theshold Decoding
7.5.3 Concatenated Reed-Solomon/Convolutional Coding
7.5.4 Punctured Convolutional Codes
7.5.5 Trellis-Coded Modulation
7.5.6 Turbo Codes
7.5.7 Applications
7.6 Summary
References
Problems
8 Fundamentals of Repeat Request Systems
8.1 Introduction
8.2 General Considerations
8.3 Three ARQ Strategies
8.3.1 Stop-and-Wait ARQ
8.3.1.1 General Description
8.3.1.2 Throughput Calculation
8.3.2 Go-Back-N ARQ
8.3.2.1 General Description
8.3.2.2 Throughput Calculation
8.3.3 Selective Repeat ARQ
8.3.3.1 General Description
8.3,3.2 Throughput Calculation
8.4 Codes for Error Detection
8.4.1 General Considerations
8.4.2 Hamming Codes
8.4.3 BCH Codes
8.4.4 Golay Codes
8.5 Summary
References
Problems
9 Spread-Spectrum Systems
9.1 introduction
9.2 Two Communication Problems
9.2.1 Pulse-Noise Jamming
9.2.2 Low Probability of Detection
9.3 Types of Spread-Spectrum Systems
9.3.1 BPSK Direct-Sequence Spread Spectrum
9.3.2 QPSK Direct-Sequence Spread Spectrum
9.3.3 Noncoherent Slow-Frequency-Hop Spread Spectrum
9.3.4 Noncoherent Fast-Frequency-Hop Spread
Spectrum
9.3.5 Hybrid Direct-Sequence/Frequency-Hop
Spread Spectrum
9.4 Complex-Envelope Representation of Spread-Spectrum
Systems
9.5 Generation and Properties of Pseudorandom Sequences
9.5.1 Definitions and Mathematical Background
9.5.2 m-Sequence Generator Configurations
9.5.3 Properties of m-Sequences
9.5.4 Power Spectrum of m-Sequences
9.5.5 Tables of Polynomials Yielding m-Sequences
9.5.6 Security of m-Sequences
9.5.7 Gold Codes
9.5.8 Kasami Sequences (Small Set)
9.5.9 Quaternary (Four-Phase) Sequences
9.5.10 Walsh Codes
9.6 Synchronization of Spread-Spectrum Systems
9.7 Performance of Spread-Spectrum Systems
in Jamming Environments
9.7.1 Introduction
9.7.2 Types of Jammers
9.7.3 Combating Smart Jammers
9.7.4 Error Probabilities for Barrage Noise Jammers
9.7.5 Error Probabilities for Optimized Partial Band
or Pulsed Jammers
9.8 Performance in Multiple User Environments
9.9 Multiuser Detection
9.10 Examples of Spread-Spectrum Systems
9.10.1 Space Shuttle Spectrum Despreader
9.10.2 Global Positioning System
9,11 Summary
References
Problems
10 Introduction to Cellular Radio Communications
10.1 Introduction
10.2 Frequency Reuse
10.3 Channel Models
10.3.1 Path Loss and Shadow Fading Models
10.3.1.1 Free Space Path Loss
10.3.1.2 Flat Earth Path Loss
10.3.1.3 Okumura/Hata Path Attenuation Model
10.3.1.4 Log-Normal Shadow Fading
10.3.2 Multipath Channel Models
10.3.2.1 Rayleigh Fading (Unresolvable-Multipath)
Models
10.3.2.2 Ricean (Unresolvable) Fading
10.3.2.3 Summary
10.3.2.4 Resolvable Multipath Components
10.3.2.5 A Mathematical Model for the WSSUS
Channel
10.4 Mitigation Techniques for the Multipath Fading Channel
10.4.1 Introduction
10.4.2 Space Diversity
10.4.3 Frequency Diversity
10.4.4 Time Diversity
10.4.5 Multipath Diversity and RAKE Receivers
10.5 System Design and Performance Prediction
10.5.1 Introduction
10.5.2 Performance Figures of Merit
10.5.3 Frequency Reuse
10.5.4 Cells Are Never Hexagons
10.5.5 Interference Averaging
10.6 Advanced Mobile Phone Service
10.6.1 Introduction
10.6.2 Call Setup and Control
10.6.3 Modulation and Signaling Formats
10.7 Global System for Mobile Communications
10.7.1 Introduction
10.7.2 System Overview
10.7.3 Modulation and Signaling Formats
10.7.4 Summary and Additional Comments
10.8 Code Division Multiple Access
10.8.1 Introduction
10.8.2 Forward Link Description
10.8.3 Reverse Link Description
10.8.4 Capacity of CDMA
10.8.5 Additional Comments
10.9 Recommended Further Reading
10.9.1 Cellular Concepts and Systems
10.9.2 Channel Modeling and Propagation
10.9.3 Concluding Remarks
References
Problems
11 Satellite Communications
11.1 Introduction
11.1.1 A Brief History of Satellite Communications
11.1.2 Basic Concepts and Terminology
11.1.3 Orbital Relationships
11.1.4 Antenna Coverage
11.2 Allocation of a Satellite Transmission Resource
11.2.1 FDMA
11.2.2 TDMA
11.2.3 CDMA
11.3 Link Power Budget Analysis
11.3.1 Bent-Pipe Relay
11.3.2 Demod/Remod (Regenerative) Digital Transponder
11.3.3 Adjacent Channel Interference
11.3.4 Adjacent Satellite Interference
11.3.5 Power Division in Limiting Repeaters
11.4 Examples of Link Power Budget Calculations
11.5 Low- and Medium-Earth Orbit Voice Messaging
Satellite Systems
11.6 Summary
References
Problems
A Probability and Random Variables
A.1 Probability Theory
A.1.1 Definitions
A.1.2 Axioms
A.1.3 Joint, Marginal, and Conditional Probabilities
A.2 Random Variables, Probability Density Functions,
and Averages
A.2.1 Random Variables
A.2.2 Probability Distribution and Density Functions
A.2.3 Averages of Random Variables
A.3 Characteristic Function and Probability Generating Function
A.3.1 Characteristic Function
A.3.2 Probability Generating Function
A.4 Transformations of Random Variables
A.4.1 General Results
A.4.2 Linear Transformations of Gaussian
Random Variables
A.5 Central Limit Theorem
References
Problems
B Characterization of Internally Generated Noise
References
Problems
C Attenuation of Radio-Wave Propagation by Atmospheric
Gases and Rain
D Generation of Coherent References
D.1 Introduction
D.2 Description of Phase Noise and Its Properties
D.2.1 General Considerations
D.2.2 Phase and Frequency Noise Power Spectra
D.2.3 Allan Variance
D.2.4 Effect of Frequency Multipliers and Dividers
on Phase-Noise Spectra
D.3 Phase-Lock Loop Models and Characteristics of Operation
D.3.1 Synchronized Mode: Linear Operation
D.3.2 Effects of Noise
D.3.3 Phase-Locked-Loop Tracking of Oscillators
with Phase Noise
D.3,4 Phase Jitter Plus Noise Effects
D.3.5 Transient Response
D.3.6 Phase-Locked-Loop Acquisition
D.3.7 Effects of Transport Delay
D.4 Frequency Synthesis
D.4.1 Digital Synthesizers
D.4.2 Direct Synthesis
D,4.2.1 Configurations
D.4.2.2 Spurious Frequency Component Generation
in Direct Synthesizers
D.4.3 Phase-Locked Frequency Synthesizers
D.4.3.1 Configurations
D.4.3.2 Output Phase Noise
D.4.3.3 Spur Generation in Indirect Synthesizers
References
Problems
E Gausslan Probability Function
Reference
F Mathematical Tables
F.1 The Sinc Function
F.2 Trigonometric Identities
F.3 Indefinite integrals
F.4 Definite Integrals
F.5 Series Expansions
F.6 Fourier Transform Theorems
F.7 Fourier Transform Pairs
Index
1 Introduction to Digital Data Transmission
1.1 Introduction
1.2 Components of a Digital Communication System
1.2.1 General Considerations
1.2.2 Subsystems in a Typical Communication System
1.2.3 Capacity of a Communications Link
1.3 Communications Channel Modeling
1.3.1 Introduction
1.3.2 Specific Examples of Communication Channels
1.3.2.1 Propagation Channels
1.3.2.2 Land Line
1.3.2.3 Compact Disc (CD) Channels
1.3.3 Approaches to Communication Channel Modeling
1.3.3.1 Discrete Channel Approach
1.3.3.2 Waveform Description
of Communication Channels
1.3.4 Interference and Distortion in Communication
Channels
1.3.5 External Channel Propagation Considerations
1.4 Communication Link Power Calculations
1.4.1 Decibels in Communication System
Performance Calculations
1.4.2 Calculation of Power Levels in Communication
Systems; Link Budgets
1.5 Driving Forces in Communications
1.6 Computer Use in Communication System Analysis and Design
1.7 Preview of the Book
References
Problems
2 Signals, Systems, Modulation, and Noise: Overview
2.1 Review of Signal and Linear System Theory
2.1.1 Introduction
2.1.2 Classification of Signals
2.1.3 Fundamental Properties of Systems
2.1.4 Complex Exponentials as Eigenfunctions
for a Fixed, Linear System; Frequency
Response Function
2.1.5 Orthogonal Function Series
2.1.6 Complex Exponential Fourier Series
2.1.7 The Fourier Transform
2.1.8 Signal Spectra
2.1.9 Energy Relationships
2.1.10 System Analysis
2.2 Basic Analog Modulation Techniques
2.2.1 Double-Sideband Modulation
2.2.2 The Hilbert Transform; Single-Sideband Modulation
2.2.3 Angle Modulation
2.3 Complex Envelope Representation of Bandpass Signals
and Systems
2.3.1 Bandpass Signals
2.3.2 Bandpass Systems
2.4 Signal Distortion and Filtering
2.4.1 Distortionless Transmission and Ideal Filters
2.4.2 Group and Phase Delay
2.4.3 Nonlinear Systems and Nonlinear Distortion
2.5 Practical Filter Types and Characteristics
2.5.1 General Terminology
2.5.2 Butterworth Filters (Maximally Flat)
2.5.3 Chebyshev Filters (Equal Ripple)
2.5.4 Bessel (Maximally Flat Delay) Filters
2.6 Sampling Theory
2.6.1 The Lowpass Sampling Theorem
2.6.2 Nonideal Effects in Sampling
2.6.3 Sampling of Bandpass Signals
2.6.4 Oversampling and Downsamplingto Ease
Filter Requirements
2.6.5 Pulse Code Modulation
2.6.6 Differential Pulse Code Modulation
2.7 Random Processes
2.7.1 Mathematical Description of Random Processes
2.7.2 Input-Output Relationships for Fixed Linear Systems
with Random Inputs; Power Spectral Density
2.7.2.1 Partial Descriptions
2.7.2.2 Output Statistics of Linear Systems
2.7.2.3 The Central and Noncentral Chi-Square
Distributions
2.7.3 Examples of Random Processes
2.7.4 Narrowband Noise Representation
2.7.5 Distributions of Envelopes of Narrowband
Gaussian Processes
2.8 Computer Generation of Random Variables
2,8.1 Introduction
2.8.2 Generation of Random Variables Having
a Specific Distribution
2.8.3 Spectrum of a Simulated White Noise Process
2.8.4 Generation of Pseudo-Noise Sequences
2.9 Summary
References
Problems
3 Basic Digital Communication Systems
3.1 Introduction
3.2 The Binary Digital Communications Problem
3.2.1 Binary Signal Detection in AWGN
3.2.2 The Matched Filter
3.2.3 Application of the Matched Filter to Binary
Data Detection
3.2.3.1 General Formula for PE
3.2.3.2 Antipodal Baseband Signaling
3.2.3.3 Baseband Orthogonal Signaling
3.2.3.4 Baseband On-Off Signaling
3.2.4 Correlator Realization of Matched Filter Receivers
3.3 Signaling Through Bandlimited Channels
3.3.1 System Model
3.3.2 Designing for Zero ISI: Nyquist's Pulse-Shaping
Criterion
3.3.3 Optimum Transmit and Receive Filters
3.3.4 Shaped Transmit Signal Spectra
3.3.5 Duobinary Signaling
3.4 Equalization in Digital Data Transmission
3.4.1 Introduction
3.4.2 Zero-Forcing Equalizers
3.4.3 Minimum Mean-Square Error Equalization
3.4.4 Adaptive Weight Adjustment
3.4.5 Other Equalizer
3.4.8 Equalizer Performance
3.5 A Digital Communication System Simulation, Example
3.6 Noise Effects in Pulse Code Modulation
3.7 Summary
References
Problems
4 Signal-Space Methods in Digital Data Transmission
4.1 Introduction
4.2 Optimum Receiver Principals in Terms of Vector Spaces
4.2.1 Maximum a Posteriori Detectors
4.2.2 Vector Representation of Signals
4.2.2.1 K-Dimensional Signal Space
Representation of the Received Waveform
4.2.2.2 Scalar Product
4.2.2.3 Gram-Schmidt Procedure
4.2.2.4 Schwarz's Inequality
4.2.2.5 Parseval's Theorem
4.2.3 MAP Detectors in Terms of Signal Spaces
4.2.4 Performance Calculations for MAP Receivers
4.3 Performance Analysis of Coherent Digital Signaling Schemes
4.3.1 Coherent Binary Systems
4.3.2 Coherent Mary Orthogonal Signal Schemes
4.3.3 M-ary Phase-Shift Keying
4.3.4 Quadrature-Amplitude Modulation
4.4 Signaling Schemes Not Requiring Coherent References
at the Receiver
4.4.1 Noncoherent Frequency-Shift Keying (NFSK)
4.4.2 Differential Phase-Shift Keying (DPSK)
4.5 Comparison of Digital Modulation Systems
4.5.1 Bit Error Probabilities from Symbol
Error Probabilities
4.5.2 Bandwidth Efficiencies of Mary Digital
Communication Systems
4.6 Comparison of M-ary Digital Modulation Schemes
on Power and Bandwidth-Equivalent Bases
4.6.1 Coherent Digital Modulation Schemes
4.6.2 Noncoherent Digital Modulation Schemes
4.7 Some Commonly Used Modulation Schemes
4.7.1 Quadrature-Multiplexed Signaling Schemes
4.7.1.1 Quadrature Multiplexing
4.7.1.2 Quadrature and Offset-Quadrature
Phase-Shift Keying
4.7.3.1 Minimum-Shift Keying
4.7.1.4 Performance of Digital Quadrature
Modulation Systems
4.7.2 Gausslan MSK
4.7.3 /4-Differential QPSK
4.7.4 Power Spectra for Quadrature Modulation Schemes
4.8 Design Examples and System Tradeoffs
4.9 Multi-h Continuous Phase Modulation
4.9.1 Description of the Multi-h CPM Signal Format
4.9.2 Calculation of Power Spectra for Multi-h CPM Signals
4.9.3 Synchronization Considerations for Multi-h
CPM Signals
4.10 Orthogonal Frequency Division Multiplexing
4.10.1 Introduction
4.10.2 The Idea behind OFDM
4.10.3 Mathematical Description of DFT-Implemented
OFDM
4.10.4 Effect of Fading on OFDM Detection
4.10.5 Parameter Choices and Implementation Issues
in OFDM
4.10.5.1 OFDM Symbol Rate for Combating
Delay Spread
4.10.5.2 Realizing Diversity in OFDM
4,10.5.3 Implementation Issues
4.10.6 Simulation of OFDM Waveforms
4.11 Summary
References
Problems
5 Channel Degradations in Digital Communications
5.1 Introduction
5.2 Synchronization in Communication Systems
5.2.1 Carrier Synchronization
5.2.2 Symbol Synchronization
5.2.3 Frame Synchronization
5.3 The Effects of Slow Signal Fading in Communication Systems
5.3.1 Performance of Binary Modulation Schemes
in Rayleigh Fading Channels
5.3.1.1 Introduction
5.3.1.2 Bit Error Probability Performance
in Slow Rayleigh Fading
5.3.1.3 The Use of Path Diversity to Improve
Performance in Fading
5.3.1.4 DPSK Performance in Moderately
5.3.2 Performance of M-ary Modulation Schemes
in Slow Fading
5.3.2.1 Introduction
5.3.2.2 M-ary PSK and DPSK Performance
in Slow Rayleigh Fading
5.3.2.3 M-ary PSK and DPSK Performance
in Slow Ricean Fading
5.3.2.4 M-ary QAM Performance in Slow
Rayleigh Fading
5.3.2.5 M-ary Noncoherent FSK Performance
in Slow Ricean Fading
5.3.3 M-ary PSK and DPSK Performance in Slow Fading
with Diversity
5.3.3.1 Rayleigh Fading
5.3.3.2 Ricean Fading
5.4 Diagnostic Tools for Communication System Design
5.4.1 Introduction
5.4.2 Eye Diagrams
5.4.3 Envelope Functions for Digital Modulation Methods
5.4.4 Phasor Plots for Digital Modulation Systems
5.5 Summary
References
Problems
6 Fundamentals of Information Theory and Block Coding
6.1 Introduction
6.2 Basic Concepts of Information Theory
6.2.1 Source Coding
6.2.2 LempeI-Ziv Procedures
6.2.3 Channel Coding and Capacity
6.2.3.1 General Considerations
6.2.3.2 Shannon's Capacity Formula
6.2.3.3 Capacityof Discrete Memoryless Channels
6.2.3.4 Computational Cutoff Rate
6.3 Fundamentals of Block Coding
6.3.1 Basic Concepts
6.3.3.1 Definition of a Block Code
6.3.3.2 Hamming Distance and Hamming Weight
6.3.3.3 Error Vectors
6.3.3.4 Optimum Decoding Rule
6.3.3.5 Decoding Regions and Error Probability
6.3.3.6 Coding Gain
6.3.3.7 Summary
6.3.2 Linear Codes
6.3.2.1 Modulo-2 Vector Arithmetic
6.3.2.2 Binary Linear Vector Spaces
6.3.2.3 Linear Block Codes
6.3.2.4 Systematic Linear Block Codes
6.3.2.5 Distance Properties of Linear Block Codes
6.3.2.6 Decoding Using the Standard Array
6.3.2.7 Error Probabilities for Linear Codes
6.3.3 Cyclic Codes
6.3.3.1 Definition of Cyclic Codes
6.3.3.2 Polynomial Arithmetic
6.3.3.3 Properties of Cyclic Codes
6.3.3.4 Encoding of Cyclic Codes
6.3.3.5 Decoding of Cyclic Codes
6.3.4 Hamming Codes
6.3.4.1 Definition of Hamming Codes
6.3.4.2 Encoding of Hamming Codes
6.3.4.3 Decoding of Hamming Codes
6.3.4.4 Performance of Hamming Cods
6.3.5 BCH Codes
6.3.5.1 Definition and Encoding for BCH Codes
6.3.5.2 Decoding of BCH Codes
6.3.5.3 Performance of BCH Codes
6.3.6 Reed-Solomon Codes
6.3.6.1 Definition of Reed-Solomon Codes
6.3.6.2 Decoding the Reed-Solomon Codes
6.3.6.3 Performance of the Reed-Solomon Codes
6.3.7 The Golay Code
6.3.7.1 Definition of the Golay Code
6.3.7.2 Decoding the Golay Code
6.3.7.3 Performance of the Golay Code
6.4 Coding Performance in Slow Fading Channels
6.5 Summary
References
Problems
Fundamentals of Convolutional Coding
7.1 Introduction
7.2 Basic Concepts
7.2.1 Definition of Convolutional Codes
7.2.2 Decoding Convolutional Codes
7.2.3 Potential Coding Gains for Soft Decisions
7.2.4 Distance Properties of Convolutional Codes
7.3 The Viterbi Algorithm
7.3.1 Hard Decision Decoding
7.3.2 Soft Decision Decoding
7.3.3 Decoding Error Probability
7.3.4 Bit Error Probability
7.4 Good Convolutional Codes and Their Performance
7.5 Other Topics
7.5.1 Sequential Decoding
7.5.2 Theshold Decoding
7.5.3 Concatenated Reed-Solomon/Convolutional Coding
7.5.4 Punctured Convolutional Codes
7.5.5 Trellis-Coded Modulation
7.5.6 Turbo Codes
7.5.7 Applications
7.6 Summary
References
Problems
8 Fundamentals of Repeat Request Systems
8.1 Introduction
8.2 General Considerations
8.3 Three ARQ Strategies
8.3.1 Stop-and-Wait ARQ
8.3.1.1 General Description
8.3.1.2 Throughput Calculation
8.3.2 Go-Back-N ARQ
8.3.2.1 General Description
8.3.2.2 Throughput Calculation
8.3.3 Selective Repeat ARQ
8.3.3.1 General Description
8.3,3.2 Throughput Calculation
8.4 Codes for Error Detection
8.4.1 General Considerations
8.4.2 Hamming Codes
8.4.3 BCH Codes
8.4.4 Golay Codes
8.5 Summary
References
Problems
9 Spread-Spectrum Systems
9.1 introduction
9.2 Two Communication Problems
9.2.1 Pulse-Noise Jamming
9.2.2 Low Probability of Detection
9.3 Types of Spread-Spectrum Systems
9.3.1 BPSK Direct-Sequence Spread Spectrum
9.3.2 QPSK Direct-Sequence Spread Spectrum
9.3.3 Noncoherent Slow-Frequency-Hop Spread Spectrum
9.3.4 Noncoherent Fast-Frequency-Hop Spread
Spectrum
9.3.5 Hybrid Direct-Sequence/Frequency-Hop
Spread Spectrum
9.4 Complex-Envelope Representation of Spread-Spectrum
Systems
9.5 Generation and Properties of Pseudorandom Sequences
9.5.1 Definitions and Mathematical Background
9.5.2 m-Sequence Generator Configurations
9.5.3 Properties of m-Sequences
9.5.4 Power Spectrum of m-Sequences
9.5.5 Tables of Polynomials Yielding m-Sequences
9.5.6 Security of m-Sequences
9.5.7 Gold Codes
9.5.8 Kasami Sequences (Small Set)
9.5.9 Quaternary (Four-Phase) Sequences
9.5.10 Walsh Codes
9.6 Synchronization of Spread-Spectrum Systems
9.7 Performance of Spread-Spectrum Systems
in Jamming Environments
9.7.1 Introduction
9.7.2 Types of Jammers
9.7.3 Combating Smart Jammers
9.7.4 Error Probabilities for Barrage Noise Jammers
9.7.5 Error Probabilities for Optimized Partial Band
or Pulsed Jammers
9.8 Performance in Multiple User Environments
9.9 Multiuser Detection
9.10 Examples of Spread-Spectrum Systems
9.10.1 Space Shuttle Spectrum Despreader
9.10.2 Global Positioning System
9,11 Summary
References
Problems
10 Introduction to Cellular Radio Communications
10.1 Introduction
10.2 Frequency Reuse
10.3 Channel Models
10.3.1 Path Loss and Shadow Fading Models
10.3.1.1 Free Space Path Loss
10.3.1.2 Flat Earth Path Loss
10.3.1.3 Okumura/Hata Path Attenuation Model
10.3.1.4 Log-Normal Shadow Fading
10.3.2 Multipath Channel Models
10.3.2.1 Rayleigh Fading (Unresolvable-Multipath)
Models
10.3.2.2 Ricean (Unresolvable) Fading
10.3.2.3 Summary
10.3.2.4 Resolvable Multipath Components
10.3.2.5 A Mathematical Model for the WSSUS
Channel
10.4 Mitigation Techniques for the Multipath Fading Channel
10.4.1 Introduction
10.4.2 Space Diversity
10.4.3 Frequency Diversity
10.4.4 Time Diversity
10.4.5 Multipath Diversity and RAKE Receivers
10.5 System Design and Performance Prediction
10.5.1 Introduction
10.5.2 Performance Figures of Merit
10.5.3 Frequency Reuse
10.5.4 Cells Are Never Hexagons
10.5.5 Interference Averaging
10.6 Advanced Mobile Phone Service
10.6.1 Introduction
10.6.2 Call Setup and Control
10.6.3 Modulation and Signaling Formats
10.7 Global System for Mobile Communications
10.7.1 Introduction
10.7.2 System Overview
10.7.3 Modulation and Signaling Formats
10.7.4 Summary and Additional Comments
10.8 Code Division Multiple Access
10.8.1 Introduction
10.8.2 Forward Link Description
10.8.3 Reverse Link Description
10.8.4 Capacity of CDMA
10.8.5 Additional Comments
10.9 Recommended Further Reading
10.9.1 Cellular Concepts and Systems
10.9.2 Channel Modeling and Propagation
10.9.3 Concluding Remarks
References
Problems
11 Satellite Communications
11.1 Introduction
11.1.1 A Brief History of Satellite Communications
11.1.2 Basic Concepts and Terminology
11.1.3 Orbital Relationships
11.1.4 Antenna Coverage
11.2 Allocation of a Satellite Transmission Resource
11.2.1 FDMA
11.2.2 TDMA
11.2.3 CDMA
11.3 Link Power Budget Analysis
11.3.1 Bent-Pipe Relay
11.3.2 Demod/Remod (Regenerative) Digital Transponder
11.3.3 Adjacent Channel Interference
11.3.4 Adjacent Satellite Interference
11.3.5 Power Division in Limiting Repeaters
11.4 Examples of Link Power Budget Calculations
11.5 Low- and Medium-Earth Orbit Voice Messaging
Satellite Systems
11.6 Summary
References
Problems
A Probability and Random Variables
A.1 Probability Theory
A.1.1 Definitions
A.1.2 Axioms
A.1.3 Joint, Marginal, and Conditional Probabilities
A.2 Random Variables, Probability Density Functions,
and Averages
A.2.1 Random Variables
A.2.2 Probability Distribution and Density Functions
A.2.3 Averages of Random Variables
A.3 Characteristic Function and Probability Generating Function
A.3.1 Characteristic Function
A.3.2 Probability Generating Function
A.4 Transformations of Random Variables
A.4.1 General Results
A.4.2 Linear Transformations of Gaussian
Random Variables
A.5 Central Limit Theorem
References
Problems
B Characterization of Internally Generated Noise
References
Problems
C Attenuation of Radio-Wave Propagation by Atmospheric
Gases and Rain
D Generation of Coherent References
D.1 Introduction
D.2 Description of Phase Noise and Its Properties
D.2.1 General Considerations
D.2.2 Phase and Frequency Noise Power Spectra
D.2.3 Allan Variance
D.2.4 Effect of Frequency Multipliers and Dividers
on Phase-Noise Spectra
D.3 Phase-Lock Loop Models and Characteristics of Operation
D.3.1 Synchronized Mode: Linear Operation
D.3.2 Effects of Noise
D.3.3 Phase-Locked-Loop Tracking of Oscillators
with Phase Noise
D.3,4 Phase Jitter Plus Noise Effects
D.3.5 Transient Response
D.3.6 Phase-Locked-Loop Acquisition
D.3.7 Effects of Transport Delay
D.4 Frequency Synthesis
D.4.1 Digital Synthesizers
D.4.2 Direct Synthesis
D,4.2.1 Configurations
D.4.2.2 Spurious Frequency Component Generation
in Direct Synthesizers
D.4.3 Phase-Locked Frequency Synthesizers
D.4.3.1 Configurations
D.4.3.2 Output Phase Noise
D.4.3.3 Spur Generation in Indirect Synthesizers
References
Problems
E Gausslan Probability Function
Reference
F Mathematical Tables
F.1 The Sinc Function
F.2 Trigonometric Identities
F.3 Indefinite integrals
F.4 Definite Integrals
F.5 Series Expansions
F.6 Fourier Transform Theorems
F.7 Fourier Transform Pairs
Index
猜您喜欢