书籍详情

计算电磁学的数值方法

计算电磁学的数值方法

作者:吕英华编著

出版社:清华大学出版社

出版时间:2006-06-01

ISBN:9787302120902

定价:¥39.80

购买这本书可以去
内容简介
  本书全面介绍了计算电磁学中的数值方法,着重阐述了计算科学方法的基础以及如何应用数值建模分析,内容包括数学分析、计算数学、泛函分析、计算机结构和算法结构、计算机软件和电磁工程建模等知识,突出了学科交叉和边缘化的特点。该书内容全面、论述系统,可作为高等院校信息与通信工程系列教材。本书全面介绍了计算电磁学中的数值方法,着重阐述了计算科学方法的基础以及如何应用数值建模分析,内容包括数学分析、计算数学、泛函分析、计算机结构和算法结构、计算机软件和电磁工程建模等知识,突出了学科交叉和边缘化的特点。本书是在作者多年教学实践经验的基础上编写的。它可作为通信工程、电子信息工程、电子科学与技术专业高年级学生和电磁场与微波专业研究生的教材,也可供从事应用物理学、生物医学工程、机械结构设计的人员学习参考。
作者简介
暂缺《计算电磁学的数值方法》作者简介
目录
第1章 电磁工程建模与计算电磁学
1.1 电磁工程建模的数值方法
1.2 计算电磁学的数值方法比较及电磁工程建模过程
第2章 并行计算机与并行算法的基本原理
2.1 并行计算机的基本结构
2.1.1 并行化是数值计算的必然趋势
2.1.2 并行计算机的系统结构
2.1.3 并行机系统结构分类
2.1.4 计算机程序性能的系统属性
2.2 程序逻辑拓扑和计算机数据通信网络拓扑的基本特性
2.2.1 并行性分析
2.2.2 系统互连结构
2.3 并行性能描述与度量
2.3.1 描述及度量并行性能的指标
2.3.2 评价并行计算性能的参数
2.4 并行计算的可扩展性原理
2.4.1 并行计算机应用模式
2.4.2 并行算法的可扩展性
2.4.3 根据性能价格比决定计算机系统的规模
2.4.4 并行机软件概述
第3章 蒙特卡罗法
3.1 蒙特卡罗法的基本原理
3.1.1 蒙特卡罗法的基本过程
3.1.2 蒙特卡罗法的基本问题
3.1.3 蒙特卡罗法的特点
3.1.4 蒙特卡罗法待研究的若干问题
3.1.5 随机变量的基本规律
3.1.6 大数定律及中心极限定理的一般形式
3.1.7 4个常见的中心极限定理
3.1.8 几种常见的概率模型和分布
3.1.9 蒙特卡罗法简单应用举例
3.2 伪随机数
3.2.1 简单子样
3.2.2 随机数与伪随机数
3.2.3 产生伪随机数的几种方法
3.2.4 伪随机数的检验
3.3 随机变量的抽样
3.3.1 直接抽样方法
3.3.2 舍选抽样方法
3.3.3 复合抽样方法
3.3.4 近似抽样方法
3.3.5 变换抽样方法
3.3.6 若干重要分布的抽样
3.4 蒙特卡罗法在确定性问题中的应用
3.4.1 用蒙特卡罗法求解线性代数方程
3.4.2 矩阵求逆
3.4.3 求解线性积分方程
3.4.4 蒙特卡罗法用于积分运算
3.5 蒙特卡罗法在随机问题中的应用
3.5.1 布朗运动
3.5.2 随机游动问题
3.6 分形的数学基础
3.6.1 自相似性和分形
3.6.2 分形的数学基础
3.6.3 限制性的扩散凝聚分形生长的模拟
3.6.4 复杂生物形态的模拟
3.7 雷达检测的蒙特卡罗仿真
3.7.1 原理
3.7.2 蒙特卡罗仿真方法
第4章 有限差分法
4.1 有限差分法基础
4.1.1 有限差分法的基本概念
4.1.2 欧拉近似
4.1.3 梯形法则和龙格-库塔法
4.2 二维泊松方程和拉普拉斯方程的有限差分法
4.2.1 建立差分格式
4.2.2 不同介质分界面上连接条件的离散方法和差分格式
4.2.3 其他形式的网格及边界条件
4.3 超松弛迭代法以及有限差分法的误差
4.3.1 有限差分法求解的一般过程
4.3.2 超松弛迭代法
4.3.3 有限差分法的收敛性和稳定性
4.4 轴对称场的差分格式与蒙特卡罗法应用
4.4.1 轴对称场的差分格式
4.4.2 蒙特卡罗法应用
4.5 抛物型和双曲型偏微分方程的有限差分法
4.5.1 抛物型偏微分方程的有限差分法
4.5.2 双曲型偏微分方程的有限差分法
第5章 时域有限差分法
5.1 时域有限差分法概述
5.1.1 时域有限差分法的特点
5.1.2 电磁场旋度方程
5.1.3 分裂场形式
5.1.4 理想导体的FDTD公式
5.1.5 损耗媒质的情况
5.2 FDTD基础
5.2.1 使用FDTD的影响因素
5.2.2 Yee单元网格空间中电磁场的量化关系
5.2.3 决定单元的空间尺寸
5.2.4 离散化的麦克斯韦方程
5.3 数值色散、数值稳定性分析
5.3.1 时间本征值
5.3.2 空间本征值
5.3.3 数值稳定条件
5.3.4 数值色散
5.4 建立Yee单元网格空间
5.4.1 入射场求解
5.4.2 理想导体的FDTD编程
5.4.3 损耗媒质的情况
5.4.4 建立Yee单元模拟空间结构
5.4.5 估算所需条件
5.5 吸收边界条件
5.5.1 单向波方程与吸收边界条件
5.5.2 二维和三维的情况
5.5.3 近似吸收边界条件
5.5.4 吸收边界条件的验证
5.6 PML吸收边界条件
5.6.1 PML吸收媒质的定义
5.6.2 PML吸收边界条件在Yee单元网格空间中的应用
5.6.3 三维PML吸收边界条件
5.6.4 非均匀网格结构的三维PML吸收边界条件
5.6.5 各向异性的PML吸收媒质
5.6.6 柱坐标系中PML的FDTD格式
5.6.7 一维PML吸收边界条件的实现
5.6.8 PML吸收边界条件的验证方法
5.7 近场远场转换
5.7.1 概述
5.7.2 三维近场远场转换原理
5.7.3 三维近场远场转换的离散化处理
5.7.4 二维近场远场转换
第6章 积分方法的数学准备
6.1 泛函分析概述
6.1.1 泛函分析初步
6.1.2 泛函空间及其性质
6.1.3 泛函分析的基本定理
6.1.4 加权剩余原理
6.2 变分原理
6.2.1 泛函的变分
6.2.2 欧拉方程
6.3 约束条件下的变分
6.3.1 约束条件下的变分问题
6.3.2 线性算子方程化为变分方程
6.4 非自伴算子方程、Rayleigh-Ritz方法
6.4.1 非自伴算子的确定性方程
6.4.2 Rayleig-Ritz方法
6.4.3 Ritz方法的误差
第7章 基于变分原理的有限元法
7.1 有限元法的一般原理
7.1.1 普遍意义下的有限元法
7.1.2 有限元法过程
7.2 二维泊松方程的有限元法
7.2.1 求单元特征式
7.2.2 建立系统有限元方程
7.3 有限元的前处理和后处理技术
7.4 单元形函数与等参数单元
7.4.1 单元形函数
7.4.2 插值多项式的选取
7.4.3 自然坐标及相关处理技术
7.5 等参数单元
7.5.1 参考单元的引入
7.5.2 三角形等参数单元的有限元方程
7.5.3 平面矩形的参数单元
7.5.4 空间六面体单元
7.6 非齐次边界条件下的变分问题
7.6.1 问题的提出
7.6.2 非齐次边界条件下的变分问题的解
7.6.3 非齐次边界条件下的泊松方程的泛函方程
第8章 电磁场中的矩量法
8.1 矩量法的基本原理
8.1.1 矩量法是一种函数空间中的近似方法
8.1.2 矩量法是一种变分法
8.1.3 子域基函数
8.1.4 截断误差和数值色散
8.2 典型的矩量法问题
8.2.1 积分方程形式
8.2.2 圆柱体散射的积分求解
8.2.3 误差分析
8.2.4 本征值问题的矩量法
8.2.5 伽略金法的收敛性
8.3 静电场的矩量法
8.3.1 静电场中的算子方程
8.3.2 带电平板的电容
8.3.3 导体系问题
8.4 微带天线的矩量法
8.4.1 理论分析
8.4.2 矩形微带天线
8.4.3 微带天线与传输线的连接
8.5 孔缝耦合问题中的矩量法
8.5.1 基本电磁学方程
8.5.2 基本原理
8.5.3 厚金属板上具有共享微波负载的多孔散射的研究
8.6 基于线网模型的矩量法
8.6.1 简介
8.6.2 线网模型的有关问题
8.6.3 线网法
第9章 基于几何射线法的混合方法
9.1 引言
9.2 几何射线法基础
9.3 射线跟踪法的分类
9.3.1 镜像法
9.3.2 完全射线跟踪法
9.4 完全射线跟踪法的应用
9.4.1 二维空间的射线发射和接收
9.4.2 三维空间的射线发射和接收
9.4.3 射线跟踪过程
9.5 射线跟踪法与时域有限差分(FDTD)法的结合
9.6 小结
第10章 课程设计篇
10.1 用有限差分法解三维非线性薛定谔方程
10.1.1 三维非线性薛定谔方程
10.1.2 解薛定谔方程的源程序
10.2 计算电磁学方法在导波分析中的应用
10.2.1 蒙特卡罗法
10.2.2 有限差分法
10.2.3 有限元法
10.2.4 用有限元法解亥姆赫兹方程
10.2.5 适宜介质波导研究的一些常用的数值计算方法
10.2.6 应用几种方法的MATLAB源程序
10.3 利用矩量法计算对称振子上的电流分布
10.3.1 矩量法简介
1O.3.2 波克林顿方程
10.3.3 广义阻抗Zij
10.3.4 计算电流分布
10.3.5 对称振子电流分布
10.3.6 误差分析
10.3.7 计算对称振子上电流分布的源程序
10.4 有限元法和蒙特卡罗法实践
10.4.1 应用有限元法求解静电场
10.4.2 应用蒙特卡罗法计算多重积分
10.4.3 应用蒙特卡罗法的源程序
10.5 FDTD法模拟TM波的传播
10.5.1 问题提出
10.5.2 问题分析
10.5.3 程序流程图及说明
10.5.4 模拟TM波传播的MATLAB源程序
10.6 用蒙特卡罗法进行分形图形的计算机模拟
10.6.1 概述
10.6.2 生物分形与人工生命
10.7 时域有限差分法解介质球散射场
10.7.1 理论基础概述
10.7.2 编程参数确定
10.7.3 问题描述
10.7.4 编程设计
10.7.5 建模与条件设置
10.7.6 求解介质球散射场的源程序
10.8 三维有限差分法对线馈矩形微带天线的分析
10.8.1 用三维有限差分法分析线馈矩形微带天线
10.8.2 用时域有限差分法分析线馈矩形微带天线
10.8.3 分析线馈矩形微带天线的源程序
10.9 利用有限差分法分析光纤光栅特性
10.9.1 光纤光栅耦合模方程的数值模型的研究
10.9.2 有限差分法求解方程
10.9.3 龙格-库塔方法求解
10.9.4 数值计算结果分析
10.9.5 结论
10.10 光孤子在光纤中的传输
10.10.1 传输方程(NLS)
10.10.2 参数Z=0处的入射脉冲
10.10.3 源程序和数值解分析
1O.10.4 结论
10.11 蒙特卡罗法的计算机仿真试验
10.11.1 用计算机的蒙特卡罗方法求定积分程序
10.11.2 雷达检测的蒙特卡罗仿真
10.11.3 邮电所随机服务系统模拟
10.12 时域有限差分法模拟二维光子晶体波导特性
lO.12.1 问题的提出与分析
10.12.2 MATLAB源程序
参考文献
猜您喜欢

读书导航