书籍详情

半导体物理与器件:基本原理

半导体物理与器件:基本原理

作者:(美)尼曼(Donald A.Neamen)著

出版社:清华大学出版社

出版时间:2003-01-01

ISBN:9787302075301

定价:¥75.00

购买这本书可以去
内容简介
  本书是一本很好的英文教科书和参考书,与目前我国大学本科生的同类教材相比,这本书具有以下特点:(1)全新的体系结构。目前国内相关专业的教学体系是先学理论物理(包括统计物理、量子力学等)、固体物理,再学半导体物理,最后学半导体器件,一般需要用2至3个学期来学完这些课程。这本书次上述课程的有关内容有机地结合在一起,学生只需具有高等数学和大学物理的基础,用1至2个学期时间就可以系统地学习到半导体物理与器件课程提供的内容。(2)注重概念方法。从内容的整体编排到具体内容的叙述,都体现了突出物理概念、强调基本分析方法的指导思想。本书还采用了大量的插图,帮助读者理解概念。(3)可读性强,便于自学。全书思路清晰,说理清楚,易于读者理解和掌握。每章的开头都有引言,告诉读者可以从本章学到什么,应该掌握什么;每章中都有例题和读者自测题;每章的最后还有总结、复习提纲和大量习题(其中一些是计算机模拟的练习题)。(4)内容丰富,覆盖面广。本书除了介绍半导体物理外,对器件的介绍也相当丰富。除了最基本和常用的BJT和MOSFET器件,还详细介绍了半导体光电器件和功率器件。不仅讲述器件的基本原理,而且介绍了器件的发展。每章后面的参考文献更让读者可以了解到自己所需要的知识细节。
作者简介
暂缺《半导体物理与器件:基本原理》作者简介
目录
Preface
CHAPTER I
The Crystal Structure of Solids
Preview
1.1 Semiconductor Materials
1.2 Types of Solids
1.3 Space Lattices
1.3.1 Primitive and Unit Cell
1.3.2 Basic Crystal Structures
1.3.3 Crystal Planes and Miller Indices
1.3.4 The Diamond Structure
1.4 Atomic Bonding
1.5 Imperfections and Impurities in Solids
1.5.1 Imperfections in Solids
1.5.2 Impurities in Solids
1.6 Growth of Semiconductor Materials
1.6.1 Growth from a Melt
1.6.2 Epitaxial Growth
1.7 Summary
Problems
CHAPTER 2
Introduction to Quantum Mechanics
Preview
2.1 Principles of Quantum Mechanics
2.1.1 Energy Quanta
2.1.2 Wave-Particle Duality
2.1.3 The Uncertainty Principle
2.2 Schrodinger's Wave Equation
2.2.1 The Wave Equation
2.2.2 Physical Meaning of the Wave Function
2.2.3 Boundary Conditions
2.3 Applications of Schrodinger's Wave Equation
2.3.1 Electron in Free Space
2.3.2 The Infinite Potential Well
2.3.3 The Step Potential Function
2.3.4 The Potential Barrier
2.4 Extensions of the Wave Theory to Atoms
2.4.1 The One-Electron Atom
2.4.2 The Periodic Table
2.5 Summary
Problems
CHAPTER 3
Introduction to the Quantum Theory of Solids
Preview
3.1 Allowed and Forbidden Energy Bands
3.1.1 Fromation of Energy Bands
3.1.2 The Kronig-Penney Model
3.1.3 The k-Space Diagram
3.2 Electrical Conduction in Solids
3.2.1 The Energy Band and the Bond Model
3.2.2 Drift Current
3.2.3 Electron Effective Mass
3.2.4 Concept of the Hole
3.2.5 Metals,Insulators,and Semiconductors
3.3 Extension to Three Dimensions
3.3.1 The k-Space Diagrams of Si and GaAs
3.3.2 Additional Effective Mass Concepts
3.4 Density of States Function
3.4.1 Mathematical Derivation
3.4.2 Extension to Semiconductors
3.5 Statistical Mechanics
3.5.1 Statistical Laws
3.5.2 The Fermi-Dirac Probability Function
3.5.3 The Distribution Function and the Fermi Energy
3.6 Summary
Problems
CHAPTER 4
The Semiconductor in Equilibrium
Preview
4.1 Charge Carriers in Semiconductors
4.1.1 Equilibrium Distribution of Electrons and Holes
4.1.2 The no and po Equations
4.1.3 The Intrinsic Carrier Concentration
4.1.4 The Intrinsic Fermi-Level
Position
4.2 Dopant Atoms and Energy Levels
4.2.1 Qualitative Description
4.2.2 Ionization Energy
4.2.3 Group III-V Semiconductors
4.3 The Extrinsic Semiconductor
4.3.1 Equilibrium Distribution of Electrons and Holes
4.3.2 The nopo Product
4.3.3 The Fermi-Dirac Integral
4.3.4 Degenerate and Nondegenerate Semiconducors
4.4 Statistics of Donors and Acceptors
4.4.1 Probability Function
4.4.2 Complete Ionization and Acceptors
4.5 Charge Neutrality
4.5.1 Compenated Semiconductors
4.5.2 Equilibrium Electron and Hole Concentrations
4.6 Position of Fermi Energy Level
4.6.1 Mathematical Derivation
4.6.2 Variation of Ep with Doping Concentration and Temperature
4.6.3 Relevance of the Fermi Energy
4.7 Summary
Problems
CHAPTER 5
Carrier Transport Phenomena
Preview
5.1 Carrier Drift
5.1.1 Drift Current Density
5.1.2 Mobility Effects
5.1.3 Conductivity
5.1.4 Velocity Saturation
5.2 Carrier Diffusion
5.2.1 Diffusion Curent Density
5.2.2 Total Current Density
5.3 Graged Impurity Distribution
5.3.1 Induced Electric Fild
5.3.2 The Einstein Relation
5.4 The Hall Effect
5.5 Summary
Problems
CHAPTER 6
Nonequilibrium Excess Carriers in Semiconductors
Preview
6.1 Carrier Generation and Recombination
6.1.1 The Semiconductor in Equilibrium
6.1.2 Excess Carrier Generation and Recombination
6.2 Characteristics of Excess Carriers
6.2.1 Comtinuity Equations
6.2.2 Time-Dependent Diffusion Equations
6.3 Ambipolar Transport
6.3.1 Derivation of the Ambipolar Transport Equation
6.3.2 Limits of Extrinsic Doping and Low Injection
6.3.3 Applications of the Ambipolar Transport Equation
6.3.4 Dielectric Relaxation Time Constant
6.3.5 Haymes-Shockley Experiment
6.4 Quasi-Fermi Energy Levels
6.5 Excess-Carrier Lifetime
6.5.1 Shockley-Read-Hall Theory of Recombination
6.5.2 Limits of Extrinsic Doping and Low Injection
6.6 Surface Effects
6.6.1 Surface States
6.6.2 Surface Recombination Velocity
6.7 Summary
Problems
CHAPTER 7
The pn Junction
Preview
7.1 Basic Structure of the pn Junction
7.2 Zero Applied Bias
7.2.1 Built-in Potential Barrier
7.2.2 Electric Field
7.2.3 Space Charge Width
7.3 Reverse Applied Bias
7.3.1 Space Charge Width and Electric Field
7.3.2 Junction Capacitance
7.3.3 One-Sided Junctions
7.4 Nonuniformly Doped Junctions
7.4.1 Linearly Graded Junction
7.4.2 Hyperabrupt Junctions
7.5 Summary
Problems
CHAPTER 8
The pn Junction Diode
Preview
8.1 pn Junction Current
8.1.1 Qualitative Description of Charge Flow in a pn Junction
8.1.2 Ideal Current-Voltage Relationship
8.1.3 Boundary Conditions
8.1.4 Minority Carrier Distribution
8.1.5 Ideal pn Junction Current
8.1.6 Summary of Physics
8.1.7 Temperature Effects
8.1.8 The"Short"Diode
8.2 Small-Signal Model of the pn Junction
8.2.1 Diffusion Resistance
8.2.2 Small-Signal Admittance
8.2.3 Equivalent Circuit
8.3 Generation-Recombination Currents
8.3.1 Reverse-Bias Generation Current
8.3.2 Forward-Bias Recambination Current
8.3.3 Total Forward-Bias Current
8.4 Junction Breakdown
8.5 Charge Storage and Diode Transients
8.5.1 The Turn-off Transient
8.5.2 The Turn-on Transient
8.6 The Tunnel Diode
8.7 Summary
Problems
CHAPTER 9
Metal-Semiconductor and Semiconductor Heterojunctions
Preview
9.1 The Schottky Barrier Diode
9.1.1 Qualitative Characteristics
9.1.2 Ideal Junction Properties
9.1.3 Nonideal Effects on the Barrier Height
9.1.4 Current-Voltage Relationship
9.1.5 Comparison of the Schottky Barier Diode and the pn Junction Diode
9.2 Metal-Semiconductor Ohmic Contacts
9.2.1 Idal Nonrectifying Barriers
9.2.2 Tunneling Barrier
9.2.3 Specific Cotact Resistance
9.3 Heterojunctions
9.3.1 Heterojunction Materials
9.3.2 Energy-Band Diagrams
9.3.3 Two-Dimensional Electron Gas
9.3.4 Equilibrium Electrostatics
9.3.5 Current-Voltage Characteristics
9.4 Summary
Problems
CHAPTER 10
The Bipolar Transistor
Preview
10.1 The Bipolar Transistor Action
10.1.1 The Basic Principle of Operation
10.1.2 Simplified Transistor Current Relations
10.1.3 The Modes of Operation
10.1.4 Amplification with Bipolar Transistors
10.2 Minority Carrier Distribution
10.2.1 Forward-Active Mode
10.2.2 Other Modes of Operation
10.3 Low-Frequency Common-Base Current Gain
10.3.1 Contributing Factors
10.3.2 Mathematical Derivation of Current Gain Factors
10.3.3 Summary
10.3.4 Expmle Calculations of the Gain Factors
10.4 Nonideal Effects
10.4.1 Base Width Modulation
10.4.2 High Injection
10.4.3 Emitter Bandga Narrowing
10.4.4 Current Crowding
10.4.5 Nonuniform Base Doping
10.4.6 Breakdown Voltage
10.5 Equivalent Circuit Models
10.5.1 Ebers-Moll Model
10.5.2 Gummel-Poon Model
10.5.3 Hybrid-Pi Model
10.6 Frequency Limitations
10.6.1 Time-Delay Factors
10.6.2 Transistor Cutoff Frequency
10.7 Large-Signal Switching
10.7.1 Switching Characteristics
10.7.2 The Schottkey-Clamped Transistor
10.8 Other Bipolar Transistor Strures
10.8.1 Polysilicon Emitter BJT
10.8.2 Silicon-Germanium Base Transistor
10.8.3 Heterojunction Bipolar Transistors
10.9 Summary
Problems
CHAPTER 11
Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor
Preview
11.1 The Two-Terminal MOS Structure
11.1.1 Energy-Band Diagrams
11.1.2 Depletion Layer Thickness
11.1.3 Work Function Differences
11.1.4 Flat-Band Voltage
11.1.5 Threshold Voltage
11.1.6 Charge Distribution
11.2 Capacitance-Voltage Characteristics
11.2.1 Ideal C-V Characteristics
11.2.2 Frequency Effects
11.2.3 Fixed Oxide and Interface Charge Effects
11.3 The Basic MODFET Operation
11.3.1 MOSFET Structures
11.3.2 Current-Voltage Relationship-Concepts
11.3.3 Current-Voltage Relationship-Mathematical Derivation
11.3.4 Transconductance
11.3.5 Substrate Bias Effects
11.4 Frequency Limiations
11.4.1 Small-Signal Equivalent Circuit
11.4.2 Frequency Limitation Factors and Cutoff Frequency
11.5 The CMOS Technology
11.6 Summary
Problems
CHAPTER 12
Metal-Oxide-Semiconductor Field-Effect Transistor :Additional Concepts
Preview
12.1 Nonideal Effects
12.1.1 Subthreshold Conduction
12.1.2 Channel Length Modulation
12.1.3 Mobility Variation
12.1.4 Velocity Saturation
12.1.5 Ballistic Transport
12.2 MOSFET Scaling
12.2.1 Constant-Field Scaling
12.2.2 Threshold Voltage-First Aroximations
12.2.3 Generalized Scaling
12.3 Threshold Voltage Modifications
12.3.1 Short-Channel Effects
12.3.2 Narrow-Channel Effects
12.4 Additional Electrical Characteristics
12.4.1 Breakdown Voltage
12.4.2 The Lightly Doped Drain Transistor
12.4.3 Threshold Adjustment by Ion Implantation
12.5 Rabiation and Hot-Electron Effects
12.5.1 Radiation-Induced Oxided Charge
12.5.2 Radiation=Induced Interface States
12.5.3 Hot-Electron Charging Effects
12.6 Summary
Problems
CHAPTER 13
The Junction Field-Effect Transistor
Preview
13.1 JEET Concepts
13.1.1 Basic pn JFTE Operation
13.1.2 Basic MESFET Operation
13.2 The Device Characteristics
13.2.1 Iternal Pinchoff Votage ,Pinchoff Voltage,and Drain-to-Source Saturation Voltage
13.2.2 Ideal DC Current-Voltage Relationship-Depletion Mode JFET
13.2.3 Transconductance
13.2.4 The MESFET
13.3 Nonideal MESFET
13.3.1 Channel Length Modulation
13.3.2 Velocity Saturation Effects
13.3.3 Subthreshold and Gate Current Effects
13.4 Equivalent Circuit and Frequency Limitations
13.4.1 Small-Signal Equivalent Circuit
13.4.2 Frequency Limitation Factors and Cutoff Frequency
13.5 High Electron Mobility Transistor
13.5.1 Quantum Well Structures
13.5.2 Transistor Performance
13.6 Summary
Problems
CHAPTER 14
Optical Devices
Preview
14.1 Optical Absorption
14.1.1 Photon Absorption Coefficient
14.1.2 Electron-Hole Pair Generation Rate
14.2 Solar Cells
14.2.1 The pn Junction Solar Cell
14.2.2 Conversion Efficiency and Solar Concentration
14.2.3 Nonuniform Absorption Effects
14.2.4 The Heterojunction Solar Cell
14.2.5 Amorphous Silicon Solar Cells
14.3 Photodetectors
14.3.1 Photonductor
14.3.2 Photodiode
14.3.3 PIN Photodiode
14.3.4 Avalanche Photodiode
14.3.5 Phototransistor
14.4 Photoluminescence and Electroluminescence
14.4.1 Basic Transitions
14.4.2 Luminescent Efficiency
14.4.3 Materials
14.5 Light Emitting Diodes
14.5.1 Generation of Light
14.5.2 Internal Quantum Efficiency
14.5.3 External Quantum Efficiency
14.5.4 LED Devices
14.6 Laser Diodes
14.6.1 Stimulated  Emission and Population Inversion
14.6.2 Optical Cavity
14.6.3 Threshold Current
14.6.4 Device Structures and Characteristics
14.7 Summary
Problem
CHAPTER 15
Semiconductor Power Devices
Preview
15.1 Power Bipolar Transistors
15.1.1 Vertical Power Transistor Structure
15.1.2 Power Transistor Characteristics
15.1.3 Darlington Pair Configuration
15.2 Power MOSFETs
15.2.1 Power Transistor Structures
15.2.2 Power MOSFET Characteristics
15.2.3 Parasitic BJT
15.3 Heat Sinks and Junction Temperature
15.4 The Thyristor
15.4.1 The Basic Characteristics
15.4.2 Triggering the SCR
15.4.3 SCR Turn-Off
15.4.4 Device Structures
15.5 Summary
Problems
APPENDIX A
Selected List of Symbols
APPENDIX B
System of Units, Conversion Factors,and General Constants
APPENDIX C
The Periodic Table
APPNDIX D
The Error Function
APPNDIX E
"Derivation"of Schrodinger's Wave Equation
APPNDIX F
Unit of Energy-The Electron-Volt
APPNDIX G
Answers to Selected Problems
Index
猜您喜欢

读书导航