书籍详情
Java算法:图算法(第2卷)
作者:(美)Robert Sedgewick著
出版社:清华大学出版社
出版时间:2004-04-01
ISBN:9787302072980
定价:¥55.00
购买这本书可以去
内容简介
本书深入介绍了图算法。书中分别对图属性和类型、图搜索、有向图、最小生成树、最短路径以及网络流的有关内容进行了透彻的讨论。在此不仅对基本内容做了全面的阐述,而且对经典算法也提供了详尽的分析,同时还涵盖了有关的高级主题。全书既强调了与实用有关的内容,在分析和理论研究上也很有深度。另外,对于书中提供的算法,读者可以放心地实现和调试,并用这些算法来解决问题。本书内容全面、论述清晰,适合于计算机科学和数学领域各个层次的人员使用。
作者简介
暂缺《Java算法:图算法(第2卷)》作者简介
目录
Graph Algorithms
Chapter 17. Graph Properties and Types
17.1 Glossary
17.2 Graph ADT
17.3 Adjacency-Matrix Representation
17.4 Adjacency-Lists Representation
17.5 Variations, Extensions, and Costs
17.6 Graph Generators
17.7 Simple, Euler, and Hamilton Paths
17.8 Graph-Processing Problems
Chapter 18. Graph Search
18.1 Exploring a Maze
18.2 Depth-First Search
18.3 Graph-Search ADT Methods
18.4 Properties of DFS Forests
18.5 DFS Algorithms
18.6 Separability and Biconnectivity
18.7 Breadth-First Search
18.8 Generalized Graph Search
18.9 Analysis of Graph Algorithms
Chapter 19. Digraphs and DAGs
19.1 Glossary and Rules of the Game
19.2 Anatomy of DFS in Digraphs
19.3 Reachability and Transitive Closure
19.4 Equivalence Relations and Partial Orders
19.5 DAGs
19.6 Topological Sorting
19.7 Reachability in DAGs
19.8 Strong Components in Digraphs
19.9 Transitive Closure Revisited
19.10 Perspective
Chapter 20. Minimum Spanning Trees
20.1 Representations
20.2 Underlying Principles of MST Algorithms
20.3 Prim''s Algorithm and Priority-First Search
20.4 Kruskal''s Algorithm
20.5 Boruvka''s Algorithm
20.6 Comparisons and Improvements
20.7 Euclidean MST
Chapter 21. Shortest Paths
21.1 Underlying Principles
21.2 Dijkstra''s Algorithm
21.3 All-Pairs Shortest Paths
21.4 Shortest Paths in Acyclic Networks
21.5 Euclidean Networks
21.6 Reduction
21.7 Negative Weights
21.8 Perspective
Chapter 22. Network Flow
22.1 Flow Networks
22.2 Augmenting-Path Maxfiow Algorithms
22.3 Prefiow-Push Maxfiow Algorithms
22.4 Maxfiow Reductions
22.5 Mincost Flows
22.6 Network Simplex Algorithm
22.7 Mincost-Flow Reductions
22.8 Perspective
References for Part Five
Index
Chapter 17. Graph Properties and Types
17.1 Glossary
17.2 Graph ADT
17.3 Adjacency-Matrix Representation
17.4 Adjacency-Lists Representation
17.5 Variations, Extensions, and Costs
17.6 Graph Generators
17.7 Simple, Euler, and Hamilton Paths
17.8 Graph-Processing Problems
Chapter 18. Graph Search
18.1 Exploring a Maze
18.2 Depth-First Search
18.3 Graph-Search ADT Methods
18.4 Properties of DFS Forests
18.5 DFS Algorithms
18.6 Separability and Biconnectivity
18.7 Breadth-First Search
18.8 Generalized Graph Search
18.9 Analysis of Graph Algorithms
Chapter 19. Digraphs and DAGs
19.1 Glossary and Rules of the Game
19.2 Anatomy of DFS in Digraphs
19.3 Reachability and Transitive Closure
19.4 Equivalence Relations and Partial Orders
19.5 DAGs
19.6 Topological Sorting
19.7 Reachability in DAGs
19.8 Strong Components in Digraphs
19.9 Transitive Closure Revisited
19.10 Perspective
Chapter 20. Minimum Spanning Trees
20.1 Representations
20.2 Underlying Principles of MST Algorithms
20.3 Prim''s Algorithm and Priority-First Search
20.4 Kruskal''s Algorithm
20.5 Boruvka''s Algorithm
20.6 Comparisons and Improvements
20.7 Euclidean MST
Chapter 21. Shortest Paths
21.1 Underlying Principles
21.2 Dijkstra''s Algorithm
21.3 All-Pairs Shortest Paths
21.4 Shortest Paths in Acyclic Networks
21.5 Euclidean Networks
21.6 Reduction
21.7 Negative Weights
21.8 Perspective
Chapter 22. Network Flow
22.1 Flow Networks
22.2 Augmenting-Path Maxfiow Algorithms
22.3 Prefiow-Push Maxfiow Algorithms
22.4 Maxfiow Reductions
22.5 Mincost Flows
22.6 Network Simplex Algorithm
22.7 Mincost-Flow Reductions
22.8 Perspective
References for Part Five
Index
猜您喜欢