书籍详情
泛函分析教程
作者:John B.Conway著
出版社:世界图书出版公司北京公司
出版时间:2003-01-01
ISBN:9787506259514
定价:¥39.00
购买这本书可以去
内容简介
CHAPTER I Hilbert Spaces、CHAPTER Ⅱ Operators on Hilbert Space、CHAPTER Ⅲ Banach Spaces、CHAPTER IV Locally Convex Spaces、CHAPTER V Weak Topologies、CHAPTER Ⅵ Linear Operators on a Banach Space、CHAPTER Ⅶ Banach Agebras and Spectral Theory for Operators on a Banach Space、CHAPTERⅧ C-Algebras、CHAPTER Ⅸ Normal perators on Hilbert Space、CHAPTER Ⅹ Unbounded Operators、CHAPTER Ⅺ Fredholm Theory等。
作者简介
暂缺《泛函分析教程》作者简介
目录
Preface
PrefacetotheSecondEdition
CHAPTERI
HilbertSpaces
1.ElementaryPropertiesandExamples
2.Orthogonality
3.TheRieszRepresentationTheorem
4.OrthonormalSetsofVectorsandBases
5.IsomorphicHilbertSpacesandtheFourierTransformfortheCircle
6.TheDirectSumofHilbertSpaces
CHAPTERII
OperatorsonHilbertSpace
1.ElementaryPropertiesandExamples
2.TheAdjointofanOperator
3.ProjectionsandIdempotents;InvariantandReducingSubspaces
4.CompactOperators
5.TheDiagonalizationofCompactSelf-AdjointOperators
6.AnApplication:Sturm-LiouvilleSystems
7.TheSpectralTheoremandFunctionalCalculusforCompactNormalOperators
8.UnitaryEquivalenceforCompactNormalOperators
CHAPTERIII
BanachSpaces
1.ElementaryPropertiesandExamples
2.LinearOperatorsonNormedSpaces
3.FiniteDimensionalNormedSpaces
4.QuotientsandProductsofNormedSpaces
5.LinearFunctionals
6.TheHahn-BanachTheorem
7.AnApplication:BanachLimits
8.AnApplication:Runge'sTheorem
9.AnApplication:OrderedVectorSpaces
10.TheDualofaQuotientSpaceandaSubspace
11.ReflexiveSpaces
12.TheOpenMappingandClosedGraphTheorems
13.ComplementedSubspacesofaBanachSpace
14.ThePrincipleofUniformBoundedness
CHAPTERIV
LocallyConvexSpaces
1.ElementaryPropertiesandExamples
2.MetrizableandNormableLocallyConvexSpaces
3.SomeGeometricConsequencesoftheHahn-BanachTheorem
4.SomeExamplesoftheDualSpaceofaLocallyConvexSpace
5.InductiveLimitsandtheSpaceofDistributions
CHAPTERV
WeakTopologies
1.Duality
2.TheDualofaSubspaceandaQuotientSpace
3.Alaoglu'sTheorem
4.ReflexivityRevisited
5.SeparabilityandMetrizability
6.AnApplication:TheStone-CechCompactification
7.TheKrein-MilmanTheorem
8.AnApplication:TheStone-WeierstrassTheorem
9.TheSchauderFixedPointTheorem
10.TheRyll-NardzewskiFixedPointTheorem
11.AnApplication:HaarMeasureonaCompactGroup
12.TheKrein-SmulianTheorem
13.WeakCompactness
CHAPTERVI
LinearOperatorsonaBanachSpace
1.TheAdjointofaLinearOperator
2.TheBanach-StoneTheorem
3.CompactOperators
4.InvariantSubspaces
5.WeaklyCompactOperators
CHAPTERVII
BanachAlgebrasandSpectralTheoryforOperatorsonaBanachSpace
1.ElementaryPropertiesandExamples
2.IdealsandQuotients
3.TheSpectrum
4.TheRieszFunctionalCalculus
5.DependenceoftheSpectrumontheAlgebra
6.TheSpectrumofaLinearOperator
7.TheSpectralTheoryofaCompactOperator
8.AbelianBanachAlgebras
9.TheGroupAlgebraofaLocallyCompactAbelianGroup
CHAPTERVIII
C*-Algebras
1.ElementaryPropertiesandExamples
2.AbelianC*-AlgebrasandtheFunctionalCalculusinC*-Algebras
3.ThePositiveElementsinaC*-Algebra
4.IdealsandQuotientsofC*-Algebras
5.RepresentationsofC*-AlgebrasandtheGelfand-Naimark-SegalConstruction
CHAPTERIX
NormalOperatorsonHilbertSpace
1.SpectralMeasuresandRepresentationsofAbelianC*-Algebras
2.TheSpectralTheorem
3.Star-CyclicNormalOperators
4.SomeApplicationsoftheSpectralTheorem
5.Topologieson()
6.CommutingOperators
7.AbelianyonNeumannAlgebras
8.TheFunctionalCalculusforNormalOperators:TheConclusionoftheSaga
9.InvariantSubspacesforNormalOperators
10.MultiplicityTheoryforNormalOperators:ACompleteSetofUnitaryInvariants
CHAPTERX
UnboundedOperators
1.BasicPropertiesandExamples
2.SymmetricandSelf-AdjointOperators
3.TheCayleyTransform
4.UnboundedNormalOperatorsandtheSpectralTheorem
5.Stone'sTheorem
6.TheFourierTransformandDifferentiation
7.Moments
CHAPTERXl
FredholmTheory
1.TheSpectrumRevisited
2.FredholmOperators
3.TheFredholmIndex
4.TheEssentialSpectrum
5.TheComponentsof
6.AFinerAnalysisoftheSpectrum
APPENDIXA
Preliminaries
1.LinearAlgebra
2.Topology
APENDIXB
TheDualofLp(u)
APPENDIXC
TheDualofCo(X)
Bibliography
ListofSymbols
Index
PrefacetotheSecondEdition
CHAPTERI
HilbertSpaces
1.ElementaryPropertiesandExamples
2.Orthogonality
3.TheRieszRepresentationTheorem
4.OrthonormalSetsofVectorsandBases
5.IsomorphicHilbertSpacesandtheFourierTransformfortheCircle
6.TheDirectSumofHilbertSpaces
CHAPTERII
OperatorsonHilbertSpace
1.ElementaryPropertiesandExamples
2.TheAdjointofanOperator
3.ProjectionsandIdempotents;InvariantandReducingSubspaces
4.CompactOperators
5.TheDiagonalizationofCompactSelf-AdjointOperators
6.AnApplication:Sturm-LiouvilleSystems
7.TheSpectralTheoremandFunctionalCalculusforCompactNormalOperators
8.UnitaryEquivalenceforCompactNormalOperators
CHAPTERIII
BanachSpaces
1.ElementaryPropertiesandExamples
2.LinearOperatorsonNormedSpaces
3.FiniteDimensionalNormedSpaces
4.QuotientsandProductsofNormedSpaces
5.LinearFunctionals
6.TheHahn-BanachTheorem
7.AnApplication:BanachLimits
8.AnApplication:Runge'sTheorem
9.AnApplication:OrderedVectorSpaces
10.TheDualofaQuotientSpaceandaSubspace
11.ReflexiveSpaces
12.TheOpenMappingandClosedGraphTheorems
13.ComplementedSubspacesofaBanachSpace
14.ThePrincipleofUniformBoundedness
CHAPTERIV
LocallyConvexSpaces
1.ElementaryPropertiesandExamples
2.MetrizableandNormableLocallyConvexSpaces
3.SomeGeometricConsequencesoftheHahn-BanachTheorem
4.SomeExamplesoftheDualSpaceofaLocallyConvexSpace
5.InductiveLimitsandtheSpaceofDistributions
CHAPTERV
WeakTopologies
1.Duality
2.TheDualofaSubspaceandaQuotientSpace
3.Alaoglu'sTheorem
4.ReflexivityRevisited
5.SeparabilityandMetrizability
6.AnApplication:TheStone-CechCompactification
7.TheKrein-MilmanTheorem
8.AnApplication:TheStone-WeierstrassTheorem
9.TheSchauderFixedPointTheorem
10.TheRyll-NardzewskiFixedPointTheorem
11.AnApplication:HaarMeasureonaCompactGroup
12.TheKrein-SmulianTheorem
13.WeakCompactness
CHAPTERVI
LinearOperatorsonaBanachSpace
1.TheAdjointofaLinearOperator
2.TheBanach-StoneTheorem
3.CompactOperators
4.InvariantSubspaces
5.WeaklyCompactOperators
CHAPTERVII
BanachAlgebrasandSpectralTheoryforOperatorsonaBanachSpace
1.ElementaryPropertiesandExamples
2.IdealsandQuotients
3.TheSpectrum
4.TheRieszFunctionalCalculus
5.DependenceoftheSpectrumontheAlgebra
6.TheSpectrumofaLinearOperator
7.TheSpectralTheoryofaCompactOperator
8.AbelianBanachAlgebras
9.TheGroupAlgebraofaLocallyCompactAbelianGroup
CHAPTERVIII
C*-Algebras
1.ElementaryPropertiesandExamples
2.AbelianC*-AlgebrasandtheFunctionalCalculusinC*-Algebras
3.ThePositiveElementsinaC*-Algebra
4.IdealsandQuotientsofC*-Algebras
5.RepresentationsofC*-AlgebrasandtheGelfand-Naimark-SegalConstruction
CHAPTERIX
NormalOperatorsonHilbertSpace
1.SpectralMeasuresandRepresentationsofAbelianC*-Algebras
2.TheSpectralTheorem
3.Star-CyclicNormalOperators
4.SomeApplicationsoftheSpectralTheorem
5.Topologieson()
6.CommutingOperators
7.AbelianyonNeumannAlgebras
8.TheFunctionalCalculusforNormalOperators:TheConclusionoftheSaga
9.InvariantSubspacesforNormalOperators
10.MultiplicityTheoryforNormalOperators:ACompleteSetofUnitaryInvariants
CHAPTERX
UnboundedOperators
1.BasicPropertiesandExamples
2.SymmetricandSelf-AdjointOperators
3.TheCayleyTransform
4.UnboundedNormalOperatorsandtheSpectralTheorem
5.Stone'sTheorem
6.TheFourierTransformandDifferentiation
7.Moments
CHAPTERXl
FredholmTheory
1.TheSpectrumRevisited
2.FredholmOperators
3.TheFredholmIndex
4.TheEssentialSpectrum
5.TheComponentsof
6.AFinerAnalysisoftheSpectrum
APPENDIXA
Preliminaries
1.LinearAlgebra
2.Topology
APENDIXB
TheDualofLp(u)
APPENDIXC
TheDualofCo(X)
Bibliography
ListofSymbols
Index
猜您喜欢