书籍详情
数理逻辑
作者:A.G.Hamilton)著
出版社:清华大学出版社
出版时间:2003-08-01
ISBN:9787302068105
定价:¥26.00
购买这本书可以去
内容简介
“数理逻辑”是一门基础性学科,选一本好的“数理逻辑”的教材,对于培养新一代计算机科学家及IT从业人员是非常重要的。经专家推荐,我们选了剑桥大学出版社的,由A.G.Hamilton著“Logic for Mathematicians”一书影印出版,希望本书的影印版能为国内高校“数理逻辑”课程的开设提供支持。本书系统地讲解了数理逻辑的基础部分——命题演算与谓词演算。第一章直观地讲解了命题逻辑基本思想和概念;第二章讲解命题逻辑的形式化系统;第三章直观地讲解了谓词逻辑;第四章讲解谓词逻辑的形式化系统;第五章介绍数学系统;第六章以很不的篇幅完整地介绍了哥德尔不完备定理以有递归函数的初步知识;第七章简要介绍了可计算性与可判定性理论。由于数理逻辑(特别是其基础部分)是一门定形的老学科,其理论体系没有什么变化。本书第一版由剑桥大学出版社于1978年出版,然后,于1988年出了修订版。自从出版以来,几乎第年都要重印,可见其受欢迎的程度。本书是适合作本科生教学的,难得的好教材,既适用于计算机专业,也适用于数学专业,对哲学专业的学生同样也是适用的。
作者简介
暂缺《数理逻辑》作者简介
目录
Preface
1 Informal statement calculus
1.1 Statements and connectives
1.2 Truth functions and truth tables
1.3 Rules for manipulation and substitution
1.4 Normal forms
1.5 Adequate sets of connectives
1.6 Arguments and validity
2 Formal statement calculus
2.1 The formal system L
2.2 The Adequacy Theorem for L
3 Informal predicate calculus
3.1 Predicates and quantifiers
3.2 First order languages
3.3 Interpretations
3.4 Satisfaction, truth
3.5 Skolemisation
4 Formal predicate calculus
4.1 The formal system K L
4.2 Equivalence, substitution
4.3 Prenex form
4.4 The Adequacy Theorem for K
4.5 Models
5 Mathematical systems
5.1 Introduction
5.2 First order systems with equality
5.3 The theory of groups
5.4 First order arithmetic
5.5 Formal set theory
5.6 Consistency and models
6 The Godel Incompleteness Theorem
6.1 Introduction
6.2 Expressibility
6.3 Recursive functions and relations
6.4 Godel numbers
6.5 The incompleteness proof
7 Computability, unsolvability, undecidability
7.1 Algorithms and computability
7.2 Turing machines
7.3 Word problems
7.4 Undecidability of formal systems
Appendix Countable and uncountable sets
Hints and solutions to selected exercises
References and further reading
Glossary of symbols
Index
1 Informal statement calculus
1.1 Statements and connectives
1.2 Truth functions and truth tables
1.3 Rules for manipulation and substitution
1.4 Normal forms
1.5 Adequate sets of connectives
1.6 Arguments and validity
2 Formal statement calculus
2.1 The formal system L
2.2 The Adequacy Theorem for L
3 Informal predicate calculus
3.1 Predicates and quantifiers
3.2 First order languages
3.3 Interpretations
3.4 Satisfaction, truth
3.5 Skolemisation
4 Formal predicate calculus
4.1 The formal system K L
4.2 Equivalence, substitution
4.3 Prenex form
4.4 The Adequacy Theorem for K
4.5 Models
5 Mathematical systems
5.1 Introduction
5.2 First order systems with equality
5.3 The theory of groups
5.4 First order arithmetic
5.5 Formal set theory
5.6 Consistency and models
6 The Godel Incompleteness Theorem
6.1 Introduction
6.2 Expressibility
6.3 Recursive functions and relations
6.4 Godel numbers
6.5 The incompleteness proof
7 Computability, unsolvability, undecidability
7.1 Algorithms and computability
7.2 Turing machines
7.3 Word problems
7.4 Undecidability of formal systems
Appendix Countable and uncountable sets
Hints and solutions to selected exercises
References and further reading
Glossary of symbols
Index
猜您喜欢