书籍详情
数值方法:MATLAB版 英文原版
作者:(美)John H.Mathews,(美)Kurtis D.Fink著
出版社:电子工业出版社
出版时间:2002-06-01
ISBN:9787505377608
定价:¥59.00
购买这本书可以去
内容简介
本书介绍了数值方法的理论及实用知识,讲述了如间利用MATLAB软件实现各种数值算法,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的选择相应的章节,形成理论与实践相结合的学习策略。书中的每个概念均以实例说明,同时还包含大量的习题,范围涉及多个不同的领域。通过这些实例,进一步说明数值方法是如何被实际应用的。本书的突出特点是强调利用MATLAB进行数值方法的程序设计,可提高读者的实践能力和加深对数值方法理论的理解;同时它的覆盖范围广,包含数据方法的众多研究领域,可以满足不同专业和不同层次学生的需求。 本书概念清晰、逻辑性强,可作为大专院校计算机、工程和应用数学专业的教材和参考书。
作者简介
暂缺《数值方法:MATLAB版 英文原版》作者简介
目录
1 Preliminaries 1
1.1 Review of Calculus 2
1.2 Binary Numbers I3
1.3 Error Analysis 24
2 The Solution of Nonlinear Equations
f(x) == 0 40
2.l Iteration for Solving x = g(x) 41
2.2 Bracketing Methods for Locating a Root 51
2.3 Initial Approximation and Convergence Criteria 62
2.4 Newton-Raphson and Secant Methods 70
2.5 Aitken's Process and Steffensen's and
Muller's Methods (Optional) 90
3 The Solution of Linear Systems AX = B
3.1 Introduction to Vectors and Matrices 101
3.2 Properties of Vectors and Matrices 109
3.3 Uppertriangular Linear Systems i20
3.4 Gaussian Elimination and Pivoting 125
3.5 TriangularFactorization 141
3.6 Iterative Methods tbr Linear Systems 156
3.7 Iteration for Non]inear Systems: Seide1 and
Newton's Methods (Optiona1) i67
4 Interpolation and Polynomial
Approximation 186
4.1 Taylor Series and Calculation of Functions I87
4.2 Introduction to Interpolation i99
4.3 Lagrange Approximation 206
4.4 Newton Po1ynomials 220
4.5 Chebyshev Polynomials (Optional) 230
4.6 Pade Approximations 243
5 Curve Fitting 252
5.1 Least-squares Line 253
5.2 Curve Fitting 263
5.3 Interpolation by Spline Functions 279
5.4 Fourier Series and Trigonometric Polynomia1s 297
6 Numerical Differentiation 310
6.1 Approximating The Derivative 311
6.2 Numerical Differentiation Formulas 329
7 Numerical Integration J42
7.1 Introduction to Quadrature 343
7.2 Composite Trapezoidal and Simpson's Rule 354
7.3 Recursive Rules and Romberg Integration 368
7.4 Adaptive Quadrature 382
7.5 Gauss-Legendre Integration (Optional) 389
8 Numerical Optimization 399
8.1 Minimization of a Function 400
9 Solution of Differential Equations 426
9.1 Introduction to Differential Equations 427
9.2 Euler's Method Jj3
9.3 Heun's Method 443
9.4 Taylor Series Method 451
9.5 Runge-Kutta Methods 458
9.6 Predictor-Corrector Methods 474
9.7 Systems of Differential Equations 487
9.8 Boundary Value Problems 497
9.9 Finite-difference Method 505
10 Solution of Partial Differential Equations S14
10.1 Hyperbolic Equations 516
10.2 Parabolic Equations 526
10.3 Elliptic Equations 538
11 Eigenvalues and Eigenvectors 555
11.1 Homogeneous Systems f The Eigenvalue Problem 556
11.2 Power Method 568
11.3 Jacobi's Method 581
11.4 Eigenvalues of Symmetric Matrices 594
Appendix: An Introduction to MATLAB 608
Some Suggested References for Reports 616
Bibliography and References 619
Answers to Selected Exercises 631
Index 655
1.1 Review of Calculus 2
1.2 Binary Numbers I3
1.3 Error Analysis 24
2 The Solution of Nonlinear Equations
f(x) == 0 40
2.l Iteration for Solving x = g(x) 41
2.2 Bracketing Methods for Locating a Root 51
2.3 Initial Approximation and Convergence Criteria 62
2.4 Newton-Raphson and Secant Methods 70
2.5 Aitken's Process and Steffensen's and
Muller's Methods (Optional) 90
3 The Solution of Linear Systems AX = B
3.1 Introduction to Vectors and Matrices 101
3.2 Properties of Vectors and Matrices 109
3.3 Uppertriangular Linear Systems i20
3.4 Gaussian Elimination and Pivoting 125
3.5 TriangularFactorization 141
3.6 Iterative Methods tbr Linear Systems 156
3.7 Iteration for Non]inear Systems: Seide1 and
Newton's Methods (Optiona1) i67
4 Interpolation and Polynomial
Approximation 186
4.1 Taylor Series and Calculation of Functions I87
4.2 Introduction to Interpolation i99
4.3 Lagrange Approximation 206
4.4 Newton Po1ynomials 220
4.5 Chebyshev Polynomials (Optional) 230
4.6 Pade Approximations 243
5 Curve Fitting 252
5.1 Least-squares Line 253
5.2 Curve Fitting 263
5.3 Interpolation by Spline Functions 279
5.4 Fourier Series and Trigonometric Polynomia1s 297
6 Numerical Differentiation 310
6.1 Approximating The Derivative 311
6.2 Numerical Differentiation Formulas 329
7 Numerical Integration J42
7.1 Introduction to Quadrature 343
7.2 Composite Trapezoidal and Simpson's Rule 354
7.3 Recursive Rules and Romberg Integration 368
7.4 Adaptive Quadrature 382
7.5 Gauss-Legendre Integration (Optional) 389
8 Numerical Optimization 399
8.1 Minimization of a Function 400
9 Solution of Differential Equations 426
9.1 Introduction to Differential Equations 427
9.2 Euler's Method Jj3
9.3 Heun's Method 443
9.4 Taylor Series Method 451
9.5 Runge-Kutta Methods 458
9.6 Predictor-Corrector Methods 474
9.7 Systems of Differential Equations 487
9.8 Boundary Value Problems 497
9.9 Finite-difference Method 505
10 Solution of Partial Differential Equations S14
10.1 Hyperbolic Equations 516
10.2 Parabolic Equations 526
10.3 Elliptic Equations 538
11 Eigenvalues and Eigenvectors 555
11.1 Homogeneous Systems f The Eigenvalue Problem 556
11.2 Power Method 568
11.3 Jacobi's Method 581
11.4 Eigenvalues of Symmetric Matrices 594
Appendix: An Introduction to MATLAB 608
Some Suggested References for Reports 616
Bibliography and References 619
Answers to Selected Exercises 631
Index 655
猜您喜欢