书籍详情

分子物理学和量子化学基础

分子物理学和量子化学基础

作者:( )Hermann Haken,( )Hans Christoph Wolf著

出版社:世界图书出版公司北京公司

出版时间:1999-11-01

ISBN:9787506214674

定价:¥98.00

购买这本书可以去
内容简介
  这是一本教材,是根据作者多年来在德国斯图加特大学授课的教材编写而成的。书中阐述了分子物理学的概貌,介绍了如何通过量子力学原理将分子性质与分子微观结构联系起来,如何通过光谱学实验方法得到分子微观结构及运动状态的信息。本书的特点是实验和理论的紧密结合。目次:绪论;分子的力学性质;电磁场中的分子;化学键理论介绍;对称和对称运用;在分子物理学和量子化学中的多电子问题;分子光谱方法概述;转动光谱;振动光谱;转动和振动谱的量子力学论述;喇曼谱;电子态;分子的电子光谱;分子光谱方法的进一步陈述;分子和光的相互作用的量子力学论述;喇曼效应的理论论述和非线性光学基础;核磁共振;电子自旋共振;大分子、生物分子和超分子;分子电子学及其应用。...
作者简介
暂缺《分子物理学和量子化学基础》作者简介
目录
     Contents
   1.Introduction
    1.1 What is a Molecule?
    1.2 Goals and Methods
    1.3 Historical Remarks
    1.4 The Significance of Molecular Physics and Quantum Chemistry
    for Other Fields
   2.Mechanical Properties of Molecules, Their Size and Mass
    2.1 Molecular Sizes
    2.2 The Shapes of Molecules
    2.3 Molecular Masses
    2.4 Momentum, Specific Heat, Kinetic Energy
   3.Molecules in Electric and Magnetic Fields
    3.1 Dielectric Properties
    3.2 Nonpolar Molecules
    3.3 Polar Molecules
    3.4 Index of Refraction, Dispersion
    3.5 The Anisotropy of the Polarisability
    3.6 Molecules in Magnetic Fields, Basic Concepts and Definitions
    3.7 Diamagnetic Molecules
    3.8 Paramagnetic Molecules
   4.Introduction to the Theory of Chemical Bonding
    4.1 A Brief Review of Quantum Mechanics
    4.2 Heteropolar and Homopolar Bonding
    4.3 The Hydrogen Molecule-Ion, H2
    4.4 The Hydrogen Molecule, H2
    4.4.1 The Variational Principle
    4.4.2 The Heitler-London Method
    4.4.3 Covalent-Ionic Resonance
    4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen
    4.4.5 Comparison of the Wavefunctions
    4.5 Hybridisation
   5.Symmetries and Symmetry Operations: A First Overview
    5.1 Fundamental Concepts
    5.2 Application to Benzene:
    the nr-Electron Wavefunctions by the Huckel Method
    5.3 The Hiickel Method Once Again.
    The Energy ofthe TT-Electrons
    5.4 Slater Determinants
    5.5 The Ethene Wavefunctions. Parity
    5.6 Summary
    Symmetries and Symmetry Operations
   6.A Systematic Approach*
    6.1 Fundamentals
    6.2 Molecular Point Groups
    6.3 The Effect of Symmetry Operations on Wavefunctions
    6.4 Similarity Transformations and Reduction of Matrices
    6.5 Fundamentals of the Theory of Group Representations
    6.5.1 The Concept ofthe Class
    6.5.2 The Character ofa Representation
    6.5.3 The Notation for Irreducible Representations
    6.5.4 The Reduction of a Representation
    6.6 Summary
    6.7 An Example: The E^O Molecule
   7.The Multi-Electron Problem in Molecular Physics
    and Quantum Chemistry
    7.1 Overview and Formulation ofthe Problem
    7.1.1 The Hamiltonian and the Schrodinger Equation
    7.1.2 Slater Determinants and Energy Expectation Values
    7.2 The Hartree-Fock Equation.
    The Self-Consistent Field (SCF) Method
    7.3 The Hartree-Fock Method for a Closed Shell
    7.4 The Unrestricted SCF Method for Open Shells
    7.5 The Restricted SCF Method for Open Shells
    7.6 Correlation Energies
    7.7 Koopman's Theorem
    7.8 Configuration Interactions
    7.9 The Second Quantisation
    7.10 Resume ofthe Results ofChapters 4-7
   8.Overview of Molecular Spectroscopy Techniques
    8.1 Spectral Regions
    8.2 An Overview of Optical Spectroscopy Methods
    8.3 Other Experimental Methods
   9. Rotational Spectroscopy
    9.1 Microwave Spectroscopy
    9.2 Diatomic Molecules
    9.2.1 The Spectmm of the Rigid Rotor (Dumbbell Model)
    9.2.2 Intensities
    9.2.3 The Non-Rigid Rotor
    9.3 Isotope Effects
    9.4 The Stark Effect
    9.5 Polyatomic Molecules
   10. Vibrational Spectroscopy
    10.1 Infra-red Spectroscopy
    10.2 Diatomic Molecules: Harmonic Approximation
    10.3 Diatomic Molecules. The Anharmonic Oscillator
    10.4 Rotational-Vibrational Spectra ofDiatomic Molecules.
    The Rotating Oscillator and the Rotational Structure of the Bands
    10.5 The Vibrational Spectra of Polyatomic Molecules
    10.6 Applications of Vibrational Spectroscopy
    10.7 Infra-red Lasers
    10.8 Microwave Masers
   11. The Quantum-Mechanical Treatment
    of Rotational and Vibrational Spectra
    11.1 The Diatomic Molecule
    11.1.1 The Bom-Oppenheimer Approximation
    11.1.2 Justification ofthe Approximations
    11.2 The Rotation of Tri- and Polyatomic Molecules
    11.2.1 The Expression for the Rotational Energy
    11.2.2 The Symmetric Top
    11.2.3 The Asymmetric Top
    11.3 The Vibrations ofTri- and Polyatomic Molecules
    11.4 Symmetry and Normal Coordinates
    11.5 Summary
   12. Raman Spectra
    12.1 The Raman Effect
    12.2 Vibrational Raman Spectra
    12.3 Rotational Raman Spectra
    12.4 The Influence of Nuclear Spins on the Rotational Structure
   13. Electronic States
    13.1 The Structure ofBand Spectra
    13.2 Types of Bonding
    13.3 Electronic States ofDiatomic Molecules
    13.4 Many-Electron States and Total Electronic States
    ofDiatomic Molecules
   14. The Electronic Spectra of Molecules
    14.1 Vibrational Structure ofthe Band Systems ofSmall Molecules;
    The Franck-Condon Principle
    14.2 The Rotational Structure of Electronic Band Spectra
    in Small Molecules; Overview and Selection Rules
    14.3 The Rotational Structure ofthe Band Spectra of Small Molecules;
    Fortrat Diagrams
    14.4 Dissociation and Predissociation
    14.5 Applications ofBand Spectra
    14.6 The Electronic Spectra ofLarger Molecules
   15. Further Remarks on the Techniques of Molecular Spectroscopy
    15.1 The Absorption ofLight
    15.2 Radiationless Processes
    15.3 The Emission ofLight
    15.4 Cold Molecules
    15.5 Dye Lasers
    15.6 High-Resolution Two-Photon Spectroscopy
    15.7 Ultrashort Pulse Spectroscopy
    15.8 Photoelectron Spectroscopy
    15.9 High-Resolution Photoelectron Spectroscopy
   16. The Interaction of Molecules with Light:
    Quantum-Mechanical Treatment
    16.1 An Overview
    16.2 Time-Dependent Perturbation Theory
    16.3 Spontaneous and Stimulated Emission
    and the Absorption of Light by Molecules
    16.3.1 The Form ofthe Hamiltonian
    16.3.2 Wavefunctions ofthe Initial and Final States
    16.3.3 The General Form ofthe Matrix Elements
    16.3.4 Transition Probabilities and the Einstein Coefficients
    16.3.5 The Calculation ofthe Absorption Coefficient
    16.3.6 Transition Moments, Oscillator Strengths,and Spatial Averaging
    16.4 The Franck-Condon Principle
    16.5 Selection Rules
    16.6 Summary
   17. Theoretical Treatment of the Raman Effect and the Elements of Nonlinear Optics
    17.1 Time-Dependent Perturbation Theory in Higher Orders
    17.2 Theoretical Description ofthe Raman Effect
    17.3 Two-Photon Absorption
   18. Nuclear Magnetic Resonance
    18.1 Fundamentals ofNuclear Resonance
    18.1.1 Nuclear Spins in a Magnetic Field
    18.1.2 Detection of Nuclear Resonance
    18.2 Proton Resonance in Molecules
    18.2.1 The Chemical Shift
    18.2.2 Fine Structure and the Direct Nuclear Spin-Spin Coupling
    18.2.3 Fine Structure and the Indirect Nuclear Spin-Spin Coupling Between Two Nuclei
    18.2.4 The Indirect Spin-Spin Interaction Among Several Nuclei
    18.3 Dynamic Processes and Relaxation Times
    18.4 Nuclear Resonance with Other Nuclei
    18.5 Two-Dimensional Nuclear Resonance
    18.6 Applications ofNuclear Magnetic Resonance
   19. Electron Spin Resonance
    19.1 Fundamentals
    19.2 The g-Factor
    19.3 Hyperfine Strueture
    19.4 Fine Structure
    19.5 Calculation of the Fine Structure Tensor and the Spin Wavefunctions of Triplet States
    19.6 Double Resonance Methods: ENDOR
    19.7 Optically Detected Magnetic Resonance (ODMR)
    19.8 Applications of ESR
   20. Macromolecules, Biomolecules, and Supermolecules
    20.1 Their Significance for Physics, Chemistry, and Biology
    20.2 Polymers
    20.3 Molecular Recognition, Molecular Inclusion
    20.4 Energy Transfer, Sensitisation
    20.5 Molecules for Photoreactions in Biology
    20.6 Molecules as the Basic Units of Life
    20.7 Molecular Functional Units
   21. Molecular Electromcs and Other Applications
    21.1 What Is it?
    21.2 Molecular Conductors
    21.3 Molecules as Switching Elements
    21.4 Moleculesas Energy Conductors
    21.5 Molecular Storage Elements
    21.6 Spectroscopy of Single Molecules in the Condensed Phase
    21.7 Electroluminescence and Light-Emitting Diodes
    21.8 The Future: Intelligent Molecular Materials
    Appendix
    Al. The Calculation of Expectation Values
    Using Wavefunctions Represented by Determinants
    A.1.1 Calculation of Determinants
    A.1.2 Calculation of Expectation Values
    A.2.3 Calculation of the Density of Radiation
   Bibliography
   Subject Index
   Fundamental Constants of Atomic Physics (Inside Front Cover)
   Energy Conversion Table (Inside Back Cover)
   
猜您喜欢

读书导航