书籍详情

自动机理论、语言和计算导论(第2版 影印版)

自动机理论、语言和计算导论(第2版 影印版)

作者:John E.Hopcroft等著

出版社:清华大学出版社

出版时间:2002-06-01

ISBN:9787302050216

定价:¥47.00

购买这本书可以去
内容简介
  本书是一本有关自动机理论、形式语言和计算复杂性的经典著作。第2版出版时,主要供研究生教学使用。由于自动机和语言理论在计算机科学的教育中已成为本科生的主要课程,作者在第2版的基础上作了全面修订。本书(第2版)除了继承原书“外看大,内看小”的特点外,在内容和风格上都作了很大的调整:降低了数学上的难度,删除了一些应用背景不大的内容,增加了一些在实践中较有影响的例子,把相关内容成功地纳入了本科阶段的教育体系。本书主要内容包括:有限状态自动机,正规语言,正规表达式,上下文无关文法,上下文无关语言,下推自动机,图灵机以及问题的不可解性、难解性和复杂性。每节后都附有练习。本书适合作计算机科学相关专业高年级教学用书。
作者简介
暂缺《自动机理论、语言和计算导论(第2版 影印版)》作者简介
目录
1 Automata: The Methods and the Madness                  
 1.l Why Study Automata Theory?                  
 1.1.1 Introduction to Finite Automata                  
 1.1.2 Structural Representations                  
 1.1.3 Automata and Complexity                  
 1.2 Introduction to Formal Proof                  
 1.2.1 Deductive Proofs                  
 1.2.2 Reduction to Definitions                  
 1.2.3 Other Theorem Forms                  
 1.2.4 Theorems That Appear Not to Be If Then Statements                  
 1.3 Additional Forms of Proof                  
 1.3.1 Proving Equivalences About Sets                  
 1.3.2 The Contrapositive                  
 1.3.3 Proof by Contradiction                  
 1.3.4 Counterexamples                  
 1.4 Inductive Proofs                  
 1.4.1 Inductions on Integers                  
 1.4.2 More General Forms of Integer Inductions                  
 1.4.3 Structural Inductions                  
 1.4.4 Mutual Inductions                  
 1.5 The Central Concepts of Aotomata Theory                  
 l.5.1 Alphabets                  
 1.5.2 Strings                  
 1.5.3 Languages                  
 1.5.4 Problems                  
 1.6 Summary of Chapter 1                  
 1.7 References for Chapter 1                  
                   
 2 Finite Automata                  
 2.1 An Informal Picture of Finite Automata                  
 2.1.l The Ground Rules                  
 2.1.2 The Protocol                  
 2.1.3 Enabling the Automata to Ignore Actions                  
 2.1.4 The Entire System as an Automaton                  
 2.1.5 Using the Product Automaton to Validate the Protocol                  
 2.2 Deterministic Finite Automata                  
 2.2.1 Definition of a Deterministic Finite Automaton                  
 2.2.2 How a DFA Processes Strings                  
 2.2.3 Simpler Notations for DFA's                  
 2.2.4 Extending the Transition Function to Strings                  
 2.2.5 The Language of a DFA                  
 2.2.6 Exercises for Section 2.2                  
 2.3 Nondeterministic Finite Automata                  
 2.3.l An Informal View of Nondeterministic Finite Automata                  
 2.3.2 Definition of Nondeterministic Finite Automata                  
 2.3.3 The Extended Transition Function                  
 2.3.4 The Language of an NFA                  
 2.3.5 Equivalence of Deterministic and Nondeterministic Finite Automata                  
 2.3.6 A Bad Case for the Subset Construction                  
 2.3.7 Exercises for Section 2.3                  
 2.4 An Application: Text Search                  
 2.4.1 Finding Strings in Text                  
 2.4.2 Nondeterministic Finite Automata for Text Search                  
 2.4.3 A DFA to Recognize a Set of Keywords                  
 2.4.4 Exercises for Section 2.4                  
 2.5 Finite Automata With Epsilon-Transitions                  
 2.5.1 Uses of e-Transitions                  
 2.5.2 The Formal Notation for an e-NFA                  
 2.5.3 Epsilon-Closures                  
 2.5.4 Extended Transitions and Languages for E-NFA's                  
 2.5.5 Eliminating e-Transitions                  
 2.5.6 Exercises for Section 2.5                  
 2.6 Summary of Chapter 2                  
 2.7 References for Chapter 2                  
                   
 3 Regular Expressions and Languages                  
 3.1 Regular Expressions                  
 3.1.1 The Operators of Regular Expressions                  
 3.1.2 Building Regu1ar Expressions                  
 3.l.3 Precedence of Regular-Expression Operators                  
 3.1.4 Exercises for Section 3.1                  
 3.2 Finite Automata and Regu1ar Expressions                  
 3.2.1 From DFA's to Regular Expressions                  
 3.2.2 Converting DFA's to Regular Expressions by Eliminating States                  
 3.2.3 Converting Regular Expressions to Automata                  
 3.2.4 Exercises for Section 3.2                  
 3.3 Applications of Regular Expressions                  
 3.3.1 Regular Expressions in UNIX                  
 3.3.2 Lexical Ana1ysis                  
 3.3.3 Finding Patterns in Text                  
 3.3.4 Exercises for Section 3.3                  
 3.4 Algebraic Laws for Regular Expressions                  
 3.4.1 Associativity and Commutativity                  
 3.4.2 Identities and Annihilators                  
 3.4.3 Distributive Laws                  
 3.4.4 The Idempotent Law                  
 3.4.5 Laws Involving Closures                  
 3.4.6 Discovering Laws for Regular Expressions                  
 3.4.7 The Test for a Regular-Expression Algebraic Law                  
 3.4.8 Exercises for Section 3.4                  
 3.5 Summary of Chapter 3                  
 3.6 References for Chapter 3                  
                   
 4 Properties of Regular Languages                  
 4.1 Proving Languages not to be Regular                  
 4.1.1 The Pumping Lemma for Regular Languages                  
 4.1.2 Applications of the Pumping Lemma                  
 4.1.3 Exercises for Section 4.1                  
 4.2 Closure Properties of Regular Languages                  
 4.2.l Closure of Regular Languages Under Boolean Operations                  
 4.2.2 Reversal                  
 4.2.3 Homomorphisms                  
 4.2.4 Inverse Homomorphisms                  
 4.2.5 Exercises for Section 4.2                  
 4.3 Decision Properties of Regular Languages                  
 4.3.1 Converting Among Representations                  
 4.3.2 Testing Emptiness of Regular Languages                  
 4.3.3 Testing Membership in a Regular Language                  
 4.3.4 Exercises for Section 4.3                  
 4.4 Equivalence and Minimization of Automata -                  
 4.4.1 Testing Equivalence of States                  
 4.4.2 Testing Equivalence of Regular Languages                  
 4.4.3 Minimization of DFA's                  
 4.4.4 Why the Minimized DFA Can't Be Beaten                  
 4.4.5 Exercises for Section 4.4                  
 4.5 Summary Of Chapter 4                  
 4.6 References for Chapter 4                  
                   
 5 Context-nee Grammars and Languages                  
 5.1 Context-Free Grammars                  
 5.1.1 An Informal Example                  
 5.1.2 Definition Of Context-nee Grammars                  
 5.1.3 Derivations Using a Grammar                  
 5.1.4 Leftmost and Rightmost Derivations                  
 5.1.5 The Language of a Grammar                  
 5.1.6 Sentential Forms                  
 5.1.7 Exercises for Section 5.1                  
 5.2 Parse Trees                  
 5.2.1 Constructing Parse Trees                  
 5.2.2 The Yield of a Parse Tree                  
 5.2.3 Inference, Derivations, and Parse Trees                  
 5.2.4 From Inferences to Trees                  
 5.2.5 From Trees to Derivations                  
 5.2.6 Mom Derivations to Recursive Inferences                  
 5.2.7 Exercises for Section 5.2                  
 5.3 Applications of Context-Tree Grammars                  
 5.3.1 Parsers                  
 5.3.2 The YACC Parser-Generator                  
 5.3.3 Markup Languages                  
 5.3.4 XML and Document-Type Definitions                  
 5.3.5 Exercises for Section 5.3                  
 5.4 Ambiguity in Grammars and Languages                  
 5.4.1 Ambiguous Grammars                  
 5.4.2 Removing Ambiguity nom Grammars                  
 5.4.3 Leftmost Derivations as a Way to Express Ambiguity                  
 5.4.4 Inherent Ambiguity                  
 5.4.5 Exercises for Section 5.4                  
 5.5 Summary of Chapter 5                  
 5.6 References for Chapter 5                  
                   
 6 Pushdown Automata                  
 6.1 Definition of the Pushdown Automaton                  
 6.1.1 Informal Introduction                  
 6.1.2 The Formal Definition Of Pushdown Automata                  
 6.1.3 A Graphical Notation for PDA's                  
 6.1.4 Instantaneous Descriptions Of a PDA                  
 6.1.5 Exercises for Section 6.1                  
 6.2 The Languages of a PDA                  
 6.2.1 Acceptance by Final State                  
 6.2.2 Acceptance by Empty Stack                  
 6.2.3 From Empty Stack to Final State                  
 6.2.4 From Final State to Empty Stack                  
 6.2.5 Excises for Section 6.2                  
 6.3 Equivalence of PDA's and CFG's                  
 6.3.1 From Grammars to Pushdown Automata                  
 6.3.2 From PDA's to Grammars                  
 6.3.3 Exercises for Section 6.3                  
 6.4 Deterministic Pushdown Automata                  
 6.4.l Definition of a Deterministic PDA                  
 6.4.2 Regular Languages and Deterministic PDA's                  
 6.4.3 DPDA's and Context-Free Languages                  
 6.4.4 DPDA's and Ambiguous Grammars                  
 6.4.5 Exercises for Section 6.4                  
 6.5 Summary of Chapter 6                  
 6.6 References for Chapter 6                  
                   
 7 Properties of Context-Free Languages                  
 7.1 Normal Forms for Context--Free Grammars                  
 7.l.l Eliminating Useless Symbols                  
 7.1.2 Computing the Generating and Reachable Symbols                  
 7.1.3 Eliminating e-Productions                  
 7.1.4 Eliminating Unit Productions                  
 7.l.5 Chomsky Normal Form                  
 7.1.6 Exercises for Section 7.1                  
 7.2 The Pumping Lemma for Context-Free Languages                  
 7.2.l The Size of Parse Trees                  
 7.2.2 Statement of the Pumping Lemma                  
 7.2.3 Applications of the Pumping Lemma for CFL's                  
 7.2.4 Exercises for Section 7.2                  
 7.3 Closure Properties of Context-Free Languages                  
 7.3.1 Substitutions                  
 7.3.2 Applications of the Substitution Theorem                  
 7.3.3 Reversal                  
 7.3.4 Intersection With a Regular Language                  
 7.3.5 Inverse Homomorphism                  
 7.3.6 Exercises for Section 7.3                  
 7.4 Decision Properties of CFL's                  
 7.4.1 Complexity of Converting Among CFG's and PDA's                  
 7.4.2 Running Time of Conversion to Chomsky Normal Form                  
 7.4.3 Testing Emptiness of CFL's                  
 7.4.4 Testing Membership in a CFL                  
 7.4.5 Preview of Undecidable CFL Problems                  
 7.4.6 Exercises for Section 7.4                  
 7.5 Summary of Chapter 7                  
 7.6 References for Chapter 7                  
                   
 8 Introduction to Turing Machines                  
 8.1 Problems That Computers Cannot Solve                  
 8.1.1 Programs that Print "Hello, World"                  
 8.1.2 The Hypothetical "Hello, World" Tester                  
 8.1.3 Reducing One Problem to Another                  
 8.1.4 Exercises for Section 8.1                  
 8.2 The Turing Machine                  
 8.2.1 The Quest to Decide All Mathematical Questions                  
 8.2.2 Notation for the Turing Machine                  
 8.2.3 Instantaneous Descriptions for Turing Machines                  
 8.2.4 Thansition Diagrams for Turing Machines                  
 8.2.5 The Language of a Turing Machine                  
 8.2.6 Turing Machines and Halting                  
 8.2.7 Exercises for Section 8.2                  
 8.3 Programming Techniques for Turing Machines                  
 8.3.l Storage in the State                  
 8.3.2 Multiple Thacks                  
 8.3.3 Subroutines                  
 8.3.4 Exercises for Section 8.3                  
 8.4 Extensions to the Basic Turing Machine                  
 8.4.l Multitape Turing Machines                  
 8.4.2 Equivalence of One--Tape and Multitape TM's                  
 8.4.3 Running Time and the Many-Tapes-to-One Construction                  
 8.4.4 Nondeterministic Turing Machines                  
 8.4.5 Exercises for Section 8.4                  
 8.5 Restricted Turing Machines                  
 8.5.1 Turing Machines With Semi-infinite Tapes                  
 8.5.2 Multistack Machines                  
 8.5.3 Counter Machines                  
 8.5.4 The Power of Counter Machines                  
 8.5.5 Exercises for Section 8.5                  
 8.6 Turing Machines and Computers                  
 8.6.1 Simulating a Turing Machine by Computer                  
 8.6.2 Simulating a Computer by a Turing Machine                  
 8.6.3 Comparing the Running Times of Computers and Turing Machines                  
 8.7 Summary of Chapter 8                  
 8.8 References for Chapter 8                  
                   
 9 Uudecidability                  
 9.1 A Language That Is Not Recursively Enumerable                  
 9.1.1 Enumerating the Binary Strings                  
 9.1.2 Codes for Turing Machines                  
 9.1.3 The Diagonalization Language                  
 9.1.4 Proof that Ld is not Recursively Enumerable                  
 9.1.5 Exercises for Section 9.1                  
 9.2 An Undecidable Problem That is RE                  
 9.2.l Recursive Languages                  
 9.2.2 Complements of Recursive and RE language                  
 9.2.3 The Universal Language                  
 9.2.4 Undecidability of the Universal Language                  
 9.2.5 Exercises for Section 9.2                  
 9.3 Undecidable Problems About Turing Machines                  
 9.3.1 Reductions                  
 9.3.2 Turing Machines That Accept the Empty Language                  
 9.3.3 Rice's Theorem and Properties of the RE Languages                  
 9.3.4 Problems about Turing-Machine Specifications                  
 9.3.5 Exercises for' Section 9.3                  
 9.4 Post's Correspondence Problem                  
 9.4.l Definition of Post's Correspondence Problem                  
 9.4.2 The "Modified" PCP                  
 9.4.3 Completion of the Proof of PCP Undecidability                  
 9.4.4 Exercises for Section 9.4                  
 9.5 Other Undecidable Problems                  
 9.5.1 Problems About Programs                  
 9.5.2 Undecidability of Ambiguity for CFG's                  
 9.5.3 The Complement of a List Language                  
 9.5.4 Exercises for Section 9.5                  
 9.6 Summary of Chapter 9                  
 9.7 References for Chapter 9                  
                   
 1O Intractable Problems                  
 10.1 The Classes P and NP                  
 10.l.1 Problems Solvable in Polynomial Time                  
 10.1.2 An Example: Kruskal's Algorithm                  
 10.1.3 Nondeterministic Polynomial Time                  
 10.1.4 An NP Example: The Traveling Salesman Problem                  
 10.l.5 Polynomial-Time Reductions                  
 10.1.6 NP-Complete Problems                  
 10.l.7 Exercises for Section 10.l                  
 l0.2 An NP-Complete Problem                  
 10.2.1 The Satisfiability Problem                  
 10.2.2 Representing SAT Instances                  
 10.2.3 NP-Completeness of the SAT Problem                  
 10.2.4 Exercises for Section 10.2                  
 10.3 A Restricted Satisfiability Problem                  
 10.3.l Normal Forms for Boolean Expressions                  
 10.3.2 Converting Expressions to CNF                  
 10.3.3 NP-Completeness of CSAT                  
 l0.3.4 NP--Completeness of 3SAT                  
 10.3.5 Exercises for Section 10.3                  
 10.4 Additional NP-Complete Problems                  
 10.4.1 Describing NP-complete Problems                  
 10.4.2 The Problem of Independent Sets                  
 10.4.3 The Node-Cover Problem                  
 10.4.4 The Directed Hamilton-Circuit Problem                  
 10.4.5 Undirected Hamilton Circuits and the TSP                  
 10.4.6 Summary of NP-Complete Problems                  
 10.4.7 Exercises for Section 10.4                  
 10.5 Summary of Chapter 10                  
 10.6 References for Chapter 10                  
                   
 11 Additional Classes of Problems                  
 11.1 Complements of Languages in NP                  
 11.1.1 The Class of Languages Co-NP                  
 11.1.2 NP-Complete Problems and Co-NP                  
 11.1.3 Exercises for Section 11.1                  
 11.2 Problems Solvable in Polynomial Space                  
 11.2.1 Polynomial-Space Turing Machines                  
 11.2.2 Relationship of PS and MS to Previously Defined Classes                  
 11.2.3 Deterministic and Nondeterministic Polynomial Space                  
 11.3 A Problem That Is Complete for PS                  
 11.3.1 PS-Completeness                  
 11.3.2 Quantified Boolean Formulas                  
 11.3.3 Evaluating Quantified Boolean Formulas                  
 11.3.4 PS-Completeness of the QBF Problem                  
 11.3.5 Exercises for Section 11.3                  
 11.4 Language Classes Based on Randomization                  
 11.4.1 Quicksort: an Example of a Randomized Algorithm                  
 11.4.2 A Turing-Machine Model Using Randomization                  
 11.4.3 The Language of a Randomized Turing Machine                  
 11.4.4 The Class RP                  
 11.4.5 Recognizing Languages in RP                  
 11.4.6 The Class ZPP                  
 11.4.7 Relationship Between RP and ZPP                  
 11.4.8 Relationships to the Classes P and NP                  
 11.5 The Complexity of Primality Testing                  
 11.5.1 The Importance of Testing Primality                  
 11.5.2 Introduction to Modular Arithmetic                  
 11.5.3 The Complexity Of Modular-Arithmetic Computations                  
 11.5.4 Random-Polynomial Primality Testing                  
 11.5.5 Nondeterministic Primality Tests                  
 11.5.6 Exercises for Section 11.5.                  
 11.6 Summary of Chapter 11                  
 11.7 References for Chapter 11                  

猜您喜欢

读书导航