书籍详情
数据结构与算法分析:C++版 英文原版
作者:(美)Clifford A.Shaffer著
出版社:电子工业出版社
出版时间:2002-07-01
ISBN:9787505377677
定价:¥45.00
购买这本书可以去
内容简介
《数据结构与算法分析(C++版)(第二版)(英文版)》著者:作译者:CliffordA.ShafferISBN号:7-5053-7767-1/TP.4500出版日期:2002-07丛书名:国外计算机科学教材系列字数:830千字定价:¥45.00元页码:510会员价:¥36.00元开本:16开放入购物篮内容简介本书采用程序员最爱用的面向对象C++语言来描述数据结构和算法,并把数据结构原理和算法分析技术有机地结合在一起,系统介绍了各种类型的数据结构和排序、检索的各种方法。作者非常注意对每一种数据结构不同存储方法及有关算法进行分析比较。书中还引入了一些比较高级的数据结构与先进的算法分析技术,并介绍了可计算性理论的一般知识。本版的重要改进在于引入了参数化的模板,从而提高了算法中数据类型的通用性,支持高效的代码重用。本书概念清楚、逻辑性强、内容新颖,可作为大专院校计算机软件专业与计算机应用专业学生的教材和参考书,也可供计算机工程技术人员参考。
作者简介
暂缺《数据结构与算法分析:C++版 英文原版》作者简介
目录
I PRELIMINARIES
1 Data Structures and Algorithms
1.1 A Philosophy of Data Structures
1.1.1 The Need for Data Structures
1.1.2 Costs and Benefits
1.2 Abstract Data Types and Data Structures
1.3 Problems, Algorithms, and Programs
1.4 Further Reading
1.5 Exercises
2 Mathematical Preliminaries
2.1 Sets and Relations
2.2 Miscellaneous Notation
2.3 Logarithms
2.4 Recursion
2.5 Summations and Recurrences
2.6 Mathematical Proof Techniques
2.6.1 Proof by Contradiction
2.6.2 Proof by Mathematical Induction
2.7 Estimating
2.8 Further Reading
2.9 Exercises
3 Algorithm Analysis
3.1 Introduction
3.2 Best, Worst, and Average Cases
3.3 A Faster Computer, or a Faster Algorithm?
3.4 Asymptotic Analysis
3.4.1 Upper Bounds
3.4.2 Lower Bounds
3.4.3 O Notation
3.4.4 Simplifying Rules
3.5 Calculating the Running Time of a Program
3.6 Analyzing Problems
3.7 Common Misunderstandings
3.8 Multiple Parameters
3.9 Space Bounds
3.10 Some Practical Considerations
3.11 Further Reading
3.12 Exercises
3.13 Projects
II FUNDAMENTAL DATA STRUCTURES
4 Lists, Stacks, and Queues
4.1 Lists
4.1.1 Array--Based List Implementation
4.1.2 Linked Lists
4.1.3 Comparison of List Implementations
4.1.4 Element Implementations
4.1.5 Doubly Linked Lists
4.2 The Dictionary ADT
4.3 Stacks
4.3.1 Array-Based Stacks
4.3.2 Linked Stacks
4.3.3 Comparison of Array--Based and Linked Stacks
4.3.4 Implementing Recursion
4.4 Queues
4.4.1 Array-Based Queues
4.4.2 Linked Queues
4.4.3 Comparison of Array-Based and Linked Queues
4.5 Further Reading
4.6 Exercises
4.7 Projects
5 Binary Trees
5.1 Definitions and Properties
5.1.1 The Full Binary Tree Theorem
5.1.2 A Binary Tree Node ADT
5.2 Binary Tree Traversals
5.3 Binary Tree Node Implementations
5.3.1 Pointer-Based Node Implementations
5.3.2 Space Requirements
5.3.3 Array Implementation for Complete Binary Trees
5.4 Binary Search Trees
5.5 Heaps and Priority Queues
5.6 Huffman Coding Trees
5.6.1 Building Huffman Coding Trees
5.6.2 Assigning and Using Huffman Codes
5.7 Further Reading
5.8 Exercises
5.9 Projects
6 Non-Binary Trees
6.1 General Tree Definitions and Terminology
6.1.1 An ADT for General Tree Nodes
6.1.2 General Tree Traversals
6.2 The Parent Pointer Implementation
6.3 General Tree Implementations
6.3.1 List of Children
6.3.2 The Left-Child/Right-Sibling Implementation
6.3.3 Dynamic Node Implementations
6.3.4 Dynamic ''Left--Child/Right-Sibling'' Implementation
6.4 K-ary Trees
6.5 Sequential Tree Implementations
6.6 Further Reading
6.7 Exercises
6.8 Projects
III Sorting and Searching
7 Internal Sorting
7.1 Sorting Terminology and Notation
7.2 Three O(n) Sorting Algorithms
7.2.1 Insertion Sort
7.2.2 Bubble Sort
7.2.3 Selection Sort
7.2.4 The Cost of Exchange Sorting
7.3 Shellsort
7.4 Quicksort
7.5 Mergesort
7.6 Heapsort
7.7 Binsort and Radix Sort
7.8 An Empirical Comparison of Sorting Algorithms
7.9 Lower Bounds for Sorting
7.10 Further Reading
7.11 Exercises
7.12 Projects
8 File Processing and External Sorting
8.1 Primary versus Secondary Storage
8.2 Disk Drives
8.2.1 Disk Drive Architecture
8.2.2 Disk Access Costs
8.3 Buffers and Buffer Pools
8.4 The Programmer's View of Files
8.5 External Sorting
8.6 Simple Approaches to External Sorting
8.7 Replacement Selection
8.8 Multiway Merging
8.9 Further Reading
8.10 Exercises
8.11 Projects
9 Searching
9.1 Searching Sorted Arrays
9.2 Self Organizing Lists
9.3 Searching in Sets
9.4 Hashing
9.4.1 Hash Functions
9.4.2 Open Hashing
9.4.3 Closed Hashing
9.5 Further Reading
9.6 Exercises
9.7 Projects
10 Indexing
10.1 Linear Indexing
10.2 ISAM
10.3 Tree Indexing
10.4 2-3 Trees
10.5 B-Trees
10.5.1 B+-Trees
10.5.2 B-Tree Analysis
10.6 Further Reading
10.7 Exercises
10.8 Projects
IV Applications and Advanced Topics
11 Graphs
11.1 Terminology and Representations
11.2 Graph Implementations
11.3 Graph Traversals
11.3.1 Depth-First Search
11.3.2 Breadth-First Search
11.3.3 Topological Sort
11.4 Shortest-Paths Problems
11.4.1 Single-Source Shortest Paths
11.4.2 All-Pairs Shortest Paths
11.5 Minimum-Cost Spanning Trees
11.5.1 Prim's Algorithm.
11.5.2 Kruskal's Algorithm
11.6 Further Reading
11.7 Exercises
11.8 Projects
12 Lists and Arrays Revisited
12.1 Skip Lists
12.2 Multilists
12.3 Matrix Representations
12.4 Memory Management
12.4.1 Dynamic Storage Allocation
12.4.2 Failure Policies and Garbage Collection
12.5 Further Reading
12.6 Exercises
12.7 Projects
13 Advanced Tree Structures
13.1 Tries
13.2 Balanced Trees
13.2.1 The AVL Tree
13.2.2 The Splay Tree
13.3 Spatial Data Structures
13.3.1 The K-D Tree
13.3.2 The PR quadtree
13.3.3 Other Spatial Data Structures
13.4 Further Reading
13.5 Exercises
13.6 Projects
14 Analysis Techniques
14.1 Summation Techniques
14.2 Recurrence Relations
14.2.1 Estimating Upper and Lower Bounds
14.2.2 Expanding Recurrences
14.2.3 Divide and Conquer Recurrences
14.2.4 Average-Case Analysis of Quicksort
14.3 Amortized Analysis
14.4 Further Reading
14.5 Exercises
14.6 Projects
15 Limits to Computation
15.1 Reductions
15.2 Hard Problems
15.2.1 NP--Completeness
15.2.2 Getting Around NP-Complete Problems
15.3 Impossible Problems
15.3.1 Uncountability
15.3.2 The Halting Problem Is Unsolvable
15.3.3 Determining Program Behavior Is Unsolvable
15.4 Further Reading
15.5 Exercises
15.6 Projects
V APPENDIX
A Utility Functions
Bibliography
Index
1 Data Structures and Algorithms
1.1 A Philosophy of Data Structures
1.1.1 The Need for Data Structures
1.1.2 Costs and Benefits
1.2 Abstract Data Types and Data Structures
1.3 Problems, Algorithms, and Programs
1.4 Further Reading
1.5 Exercises
2 Mathematical Preliminaries
2.1 Sets and Relations
2.2 Miscellaneous Notation
2.3 Logarithms
2.4 Recursion
2.5 Summations and Recurrences
2.6 Mathematical Proof Techniques
2.6.1 Proof by Contradiction
2.6.2 Proof by Mathematical Induction
2.7 Estimating
2.8 Further Reading
2.9 Exercises
3 Algorithm Analysis
3.1 Introduction
3.2 Best, Worst, and Average Cases
3.3 A Faster Computer, or a Faster Algorithm?
3.4 Asymptotic Analysis
3.4.1 Upper Bounds
3.4.2 Lower Bounds
3.4.3 O Notation
3.4.4 Simplifying Rules
3.5 Calculating the Running Time of a Program
3.6 Analyzing Problems
3.7 Common Misunderstandings
3.8 Multiple Parameters
3.9 Space Bounds
3.10 Some Practical Considerations
3.11 Further Reading
3.12 Exercises
3.13 Projects
II FUNDAMENTAL DATA STRUCTURES
4 Lists, Stacks, and Queues
4.1 Lists
4.1.1 Array--Based List Implementation
4.1.2 Linked Lists
4.1.3 Comparison of List Implementations
4.1.4 Element Implementations
4.1.5 Doubly Linked Lists
4.2 The Dictionary ADT
4.3 Stacks
4.3.1 Array-Based Stacks
4.3.2 Linked Stacks
4.3.3 Comparison of Array--Based and Linked Stacks
4.3.4 Implementing Recursion
4.4 Queues
4.4.1 Array-Based Queues
4.4.2 Linked Queues
4.4.3 Comparison of Array-Based and Linked Queues
4.5 Further Reading
4.6 Exercises
4.7 Projects
5 Binary Trees
5.1 Definitions and Properties
5.1.1 The Full Binary Tree Theorem
5.1.2 A Binary Tree Node ADT
5.2 Binary Tree Traversals
5.3 Binary Tree Node Implementations
5.3.1 Pointer-Based Node Implementations
5.3.2 Space Requirements
5.3.3 Array Implementation for Complete Binary Trees
5.4 Binary Search Trees
5.5 Heaps and Priority Queues
5.6 Huffman Coding Trees
5.6.1 Building Huffman Coding Trees
5.6.2 Assigning and Using Huffman Codes
5.7 Further Reading
5.8 Exercises
5.9 Projects
6 Non-Binary Trees
6.1 General Tree Definitions and Terminology
6.1.1 An ADT for General Tree Nodes
6.1.2 General Tree Traversals
6.2 The Parent Pointer Implementation
6.3 General Tree Implementations
6.3.1 List of Children
6.3.2 The Left-Child/Right-Sibling Implementation
6.3.3 Dynamic Node Implementations
6.3.4 Dynamic ''Left--Child/Right-Sibling'' Implementation
6.4 K-ary Trees
6.5 Sequential Tree Implementations
6.6 Further Reading
6.7 Exercises
6.8 Projects
III Sorting and Searching
7 Internal Sorting
7.1 Sorting Terminology and Notation
7.2 Three O(n) Sorting Algorithms
7.2.1 Insertion Sort
7.2.2 Bubble Sort
7.2.3 Selection Sort
7.2.4 The Cost of Exchange Sorting
7.3 Shellsort
7.4 Quicksort
7.5 Mergesort
7.6 Heapsort
7.7 Binsort and Radix Sort
7.8 An Empirical Comparison of Sorting Algorithms
7.9 Lower Bounds for Sorting
7.10 Further Reading
7.11 Exercises
7.12 Projects
8 File Processing and External Sorting
8.1 Primary versus Secondary Storage
8.2 Disk Drives
8.2.1 Disk Drive Architecture
8.2.2 Disk Access Costs
8.3 Buffers and Buffer Pools
8.4 The Programmer's View of Files
8.5 External Sorting
8.6 Simple Approaches to External Sorting
8.7 Replacement Selection
8.8 Multiway Merging
8.9 Further Reading
8.10 Exercises
8.11 Projects
9 Searching
9.1 Searching Sorted Arrays
9.2 Self Organizing Lists
9.3 Searching in Sets
9.4 Hashing
9.4.1 Hash Functions
9.4.2 Open Hashing
9.4.3 Closed Hashing
9.5 Further Reading
9.6 Exercises
9.7 Projects
10 Indexing
10.1 Linear Indexing
10.2 ISAM
10.3 Tree Indexing
10.4 2-3 Trees
10.5 B-Trees
10.5.1 B+-Trees
10.5.2 B-Tree Analysis
10.6 Further Reading
10.7 Exercises
10.8 Projects
IV Applications and Advanced Topics
11 Graphs
11.1 Terminology and Representations
11.2 Graph Implementations
11.3 Graph Traversals
11.3.1 Depth-First Search
11.3.2 Breadth-First Search
11.3.3 Topological Sort
11.4 Shortest-Paths Problems
11.4.1 Single-Source Shortest Paths
11.4.2 All-Pairs Shortest Paths
11.5 Minimum-Cost Spanning Trees
11.5.1 Prim's Algorithm.
11.5.2 Kruskal's Algorithm
11.6 Further Reading
11.7 Exercises
11.8 Projects
12 Lists and Arrays Revisited
12.1 Skip Lists
12.2 Multilists
12.3 Matrix Representations
12.4 Memory Management
12.4.1 Dynamic Storage Allocation
12.4.2 Failure Policies and Garbage Collection
12.5 Further Reading
12.6 Exercises
12.7 Projects
13 Advanced Tree Structures
13.1 Tries
13.2 Balanced Trees
13.2.1 The AVL Tree
13.2.2 The Splay Tree
13.3 Spatial Data Structures
13.3.1 The K-D Tree
13.3.2 The PR quadtree
13.3.3 Other Spatial Data Structures
13.4 Further Reading
13.5 Exercises
13.6 Projects
14 Analysis Techniques
14.1 Summation Techniques
14.2 Recurrence Relations
14.2.1 Estimating Upper and Lower Bounds
14.2.2 Expanding Recurrences
14.2.3 Divide and Conquer Recurrences
14.2.4 Average-Case Analysis of Quicksort
14.3 Amortized Analysis
14.4 Further Reading
14.5 Exercises
14.6 Projects
15 Limits to Computation
15.1 Reductions
15.2 Hard Problems
15.2.1 NP--Completeness
15.2.2 Getting Around NP-Complete Problems
15.3 Impossible Problems
15.3.1 Uncountability
15.3.2 The Halting Problem Is Unsolvable
15.3.3 Determining Program Behavior Is Unsolvable
15.4 Further Reading
15.5 Exercises
15.6 Projects
V APPENDIX
A Utility Functions
Bibliography
Index
猜您喜欢