书籍详情
人生的不标准答案
作者:张忠朴著
出版社:中信出版社
出版时间:2002-10-01
ISBN:9787800734649
定价:¥18.00
购买这本书可以去
内容简介
在不标准的生活理念里飞扬,你才能找到属于自己的海阔天空。也许你没有听说过张忠朴这个人,但请你一定要看看这本书。在你最安静的时候,翻一翻这本书;用最原始无伪的生命体验,去体会这一个人。体会他在27年职场生涯中,不论是做小工程师,还是贵为老板,总是“欢欢喜喜出门,快快乐乐回家”的诀窍。体会他在学生与老师两种身分之间,充分挖掘出的学习之美、学习之乐。体会他自创一格、让人更自在的沟通说理方式。体会他不甘心“白白”生病,而将“养生有误”转化成“养生有悟”的智慧与福气。也许,你可以就此找到属于你自己的、正确但不怎么标准的人生答案。·在人的职业生涯中,有一些人总是在“找”一份好工作,结果似乎总是找不到,为什么呢?因为如果真的有那么好的工作,目前拥有的人为什么要将这个宝贵的机会让出来呢?慢慢地,回思考、肯反省的人终于领悟了一个真理:好工作不是被找到的,而是在快乐中做到的。·你曾经吃过多少颗苹果呢?你知道苹果里面有一颗星星吗?如果你从来没见过苹果里的星星,那也许正是对我们墨守成规的一种提醒。·拥有幸福就是一般人对美丽人生最直觉的定义。但是,在更深层的生命中,悲与离一样可以孕育出美丽,那种美丽就是不断地给苦难中的人打气,让他们感受并坚持走出痛苦的希望。·决定一件事不平凡的关键因素是什么?是价值观。和野人一起被太阳晒的人何其多,但是否每一位都领悟了冬阳的价值?人们大概觉得冬阳太平凡吧!许多人都被功利主义搞昏了头,错把价钱观当作价值观,把愈贵的东西看得愈有价值。殊不知,免费和价值绝对是两种尺度,心告诉我们重要的东西,才值得我们珍惜。
作者简介
张忠朴,1950年出生于台南。先后毕业于东海大学工业工程系及亚洲管理学院。曾任迪吉多电脑品管经理、德泰科技品管经理、华通电脑总经理室经理及总管理处处长、东海大学兼任讲师。现为中原大学兼任讲师、寻智专业顾问公司总经理。在亚洲管理学院攻读时,深受其教育方式的冲击,开始关心教育议题,提倡快乐而有效的终身学习方式。《人生的不标准答案》是他第一本在专业之外,展现人生体验与观察的文集。
目录
Preface
To the student
To the educator
The current edition
Feedback to the author
Acknowledgments
0 Introduction
0. l Automata, Computability, and Complexity
Complexity theory
Computability theory
Automata theory
0.2 Mathematical Notions and Terminology
Sets
Sequences and tuples
Functions and relations
Graphs
Strings and languages
Boolean logic
Summary of mathematical terms
O.3 Definitions, Theorems, and Proofs
Finding proofs
0.4 Types of Proof
Proof by construction
Proof by contradiction
Proof by induction
Exercises and Problems
Part One: Automata and
l Regular
l . l Finite Automata
Formal definition of a finite automaton
Examples of finite automata
Formal definition of computation
Designing finite automata
The regular operations
l .2 Nondeterminism
Formal definition of a nondeterministic finite automaton
Equivalence of NFAs and DFAs
Closure under the regular operations
l . 3 Regular Expressions
Formal definition of a regular expression
Equivalence with finite automata
l .4 Nonregular Languages
The pumping lemma for regular languages
Exercises and Problems
2 Context-Free Languages
2 . l Context-free Grammars
Formal definition of a context-free grammar
Examples of context-free grammars
Designing context-free grammars
Ambiguity
Chomsky normal form
2 .2 Pushdown Automata
Formal definition of a pushdown automaton
Examples of pushdown automata
Equivalence with context-free grammars
2 . 3 Non-context-free Languages
The pumping lemma for context-free languages
Exercises and Problems
Part Two: Computability Theory
3 The Church-Turing Thesis
3 . l Turing Machines
Formal definition of a Turing machine
Examples of Turing machines
3 .2 Variants of Turing Machines
Multitape Turing machines
Nondeterministic Turing machines
Enumerators
Equivalence with other models
3 .3 The Definition of Algorithm
Hilbert's problems
Terminology for describing Turing machines
Exercises and Problems
4 Decidability
4. l Decidable Languages
Decidable problems concerning regular languages
Decidable problems concerning context-free languages
4.2 The Halting Problem
The diagonalization method
The halting problem is undecidable
A Turing-unrecognizable language
Exercises and Problems
5 Reducibility
5 . l Undecidable Problems from Language Theory
Reductions via computation histories
5.2 A Simple Undecidable Problem
5 . 3 Mapping Reducibility
Computable functions
Formal definition of mapping reducibility
Exercises and Problems
6 Advanced Topics in Computability Theory
6. 1 The Recursion Theorem
Self-reference
Terminology for the recursion theorem
Applications
6.2 Decidability of logical theories
A decidable theory
An undecidable theory
6. 3 Turing Reducibility
6.4 A Definition of Information
Minimal length descriptions
Optimality of the definition
Incompressible Strings and randomness
Exercises and Problems
Part Three: Complexity Theory
7 Time Complexity
7. l Measuring Complexity
Big-O and small-o notation
Analyzing algorithms
Complexity relationships among models
7.2 The Class P
Polynomial time
Examples of problems in P
7.3 The Class NP
Examples of problems in NP
The P versus NP question
7 .4 NP-completeness
Polynomial time reducibility
Definition of NP-completeness
The Cook-Levin Theorem
7. 5 Additional NP-complete Problems
The vertex cover problem
The Hamiltonian path problem
The subset sum problem
Exercises and Problems
8 Space Complexity
8. l Savitch's Theorem
8.2 The Class PSPACE
8 . 3 PSPACE-completeness
The TQBF problem
Winning strategies for games
Generalized geography
8.4 The Classes Land NL
8. 5 NL-completeness
Searching in graphs
8.6 NL equals coNL
Exercises and Problems
9 Intractability
9. l Hierarchy Theorems
Exponential space completeness
9.2 Relativization
Limits of the diagonalization method
9. 3 Circuit Complexity
Exercises and Problems
10 Advanced topics in complexity theory
l0. l Approximation Algorithms
l0.2 Probabilistic Algorithms
The class BPP
Primality
Read-once branching programs
10.3 Alternation
Alternating time and space
The Polynomial time hierarchy
10.4 Interactive Proof Systems
Graph nonisomorphism
Definition of the model
IP = PSPACE
l0.5 Parallel Compuation
Uniform Boolean circuits
The class NC
P-completeness
IO.6 Cryptography
Secret keys
Public-key cryptosystems
One-way functions
Trapdoor functions
Exercises and Problems
Selected Bibliography
Index
To the student
To the educator
The current edition
Feedback to the author
Acknowledgments
0 Introduction
0. l Automata, Computability, and Complexity
Complexity theory
Computability theory
Automata theory
0.2 Mathematical Notions and Terminology
Sets
Sequences and tuples
Functions and relations
Graphs
Strings and languages
Boolean logic
Summary of mathematical terms
O.3 Definitions, Theorems, and Proofs
Finding proofs
0.4 Types of Proof
Proof by construction
Proof by contradiction
Proof by induction
Exercises and Problems
Part One: Automata and
l Regular
l . l Finite Automata
Formal definition of a finite automaton
Examples of finite automata
Formal definition of computation
Designing finite automata
The regular operations
l .2 Nondeterminism
Formal definition of a nondeterministic finite automaton
Equivalence of NFAs and DFAs
Closure under the regular operations
l . 3 Regular Expressions
Formal definition of a regular expression
Equivalence with finite automata
l .4 Nonregular Languages
The pumping lemma for regular languages
Exercises and Problems
2 Context-Free Languages
2 . l Context-free Grammars
Formal definition of a context-free grammar
Examples of context-free grammars
Designing context-free grammars
Ambiguity
Chomsky normal form
2 .2 Pushdown Automata
Formal definition of a pushdown automaton
Examples of pushdown automata
Equivalence with context-free grammars
2 . 3 Non-context-free Languages
The pumping lemma for context-free languages
Exercises and Problems
Part Two: Computability Theory
3 The Church-Turing Thesis
3 . l Turing Machines
Formal definition of a Turing machine
Examples of Turing machines
3 .2 Variants of Turing Machines
Multitape Turing machines
Nondeterministic Turing machines
Enumerators
Equivalence with other models
3 .3 The Definition of Algorithm
Hilbert's problems
Terminology for describing Turing machines
Exercises and Problems
4 Decidability
4. l Decidable Languages
Decidable problems concerning regular languages
Decidable problems concerning context-free languages
4.2 The Halting Problem
The diagonalization method
The halting problem is undecidable
A Turing-unrecognizable language
Exercises and Problems
5 Reducibility
5 . l Undecidable Problems from Language Theory
Reductions via computation histories
5.2 A Simple Undecidable Problem
5 . 3 Mapping Reducibility
Computable functions
Formal definition of mapping reducibility
Exercises and Problems
6 Advanced Topics in Computability Theory
6. 1 The Recursion Theorem
Self-reference
Terminology for the recursion theorem
Applications
6.2 Decidability of logical theories
A decidable theory
An undecidable theory
6. 3 Turing Reducibility
6.4 A Definition of Information
Minimal length descriptions
Optimality of the definition
Incompressible Strings and randomness
Exercises and Problems
Part Three: Complexity Theory
7 Time Complexity
7. l Measuring Complexity
Big-O and small-o notation
Analyzing algorithms
Complexity relationships among models
7.2 The Class P
Polynomial time
Examples of problems in P
7.3 The Class NP
Examples of problems in NP
The P versus NP question
7 .4 NP-completeness
Polynomial time reducibility
Definition of NP-completeness
The Cook-Levin Theorem
7. 5 Additional NP-complete Problems
The vertex cover problem
The Hamiltonian path problem
The subset sum problem
Exercises and Problems
8 Space Complexity
8. l Savitch's Theorem
8.2 The Class PSPACE
8 . 3 PSPACE-completeness
The TQBF problem
Winning strategies for games
Generalized geography
8.4 The Classes Land NL
8. 5 NL-completeness
Searching in graphs
8.6 NL equals coNL
Exercises and Problems
9 Intractability
9. l Hierarchy Theorems
Exponential space completeness
9.2 Relativization
Limits of the diagonalization method
9. 3 Circuit Complexity
Exercises and Problems
10 Advanced topics in complexity theory
l0. l Approximation Algorithms
l0.2 Probabilistic Algorithms
The class BPP
Primality
Read-once branching programs
10.3 Alternation
Alternating time and space
The Polynomial time hierarchy
10.4 Interactive Proof Systems
Graph nonisomorphism
Definition of the model
IP = PSPACE
l0.5 Parallel Compuation
Uniform Boolean circuits
The class NC
P-completeness
IO.6 Cryptography
Secret keys
Public-key cryptosystems
One-way functions
Trapdoor functions
Exercises and Problems
Selected Bibliography
Index
猜您喜欢