书籍详情
动态系统的数字控制
作者:(美)Gene F.Franklin等著
出版社:清华大学出版社
出版时间:2001-09-01
ISBN:9787302047476
定价:¥59.00
购买这本书可以去
内容简介
本书对数字控制系统(即计算机控制系统)的分析、设计和建模等进行了系统的介绍。其中尤以较多篇幅讨论了数字控制系统的设计,同时对于一些实际问题,如采样周期的选择、量化效应的分析等进行了深入的讨论,并且有单独一章及一个附录专门介绍数字控制的内容。本书注重理论联系实际,书中不仅给出理论结果,而且给出实用的理论和对一些实际问题的考虑。同时引入Matlab作为计算机辅助设计控制的软件工具,从而使所介绍的理论和方法更易于接受和应用。本书内容丰富、取材适当、兼顾了系统性、先进性和实用性等方面的要求。该书可作为与控制工程相关各专业的研究生或高年级本科生的教材或参考书。
作者简介
暂缺《动态系统的数字控制》作者简介
目录
Preface xix
1 Introduction
1. 1 Problem Definition
1. 2 Overview of Design Approach
1. 3 Computer-Aided Design
1. 4 Suggestions for Further Reading
1. 5 Summary
1. 6 Problems
2 Review of Continuous Control
2. 1 Dynamic Response
2. 1. 1 Differential Equations
2. l. 2 Laplace Transforms and Transfer Functions
2. 1. 3 Output Time Histories
2. 1. 4 The Final Value Theorem
2. 1. 5 Block Diagrams
2. 1. 6 Response versus Pole Locations
2. 1. 7 Time-Domain Specifications
2. 2 Basic Properties of Feedback
2. 2. 1 Stability
2. 2. 2 Steady-State Errors
2. 2. 3 PID Control
2. 3 Root Locus
2. 3. 1 Problem Definition
2. 3. 2 Root Locus Drawing Rules
2. 3. 3 Computer-Aided Loci
2. 4 Frequency Response Design
2. 4. 1 Specifications
2. 4. 2 Bode Plot Techniques
2. 4. 3 Steady-State Errors
2. 4. 4 Stability Margins
2. 4. 5 Bode's Gain-Phase Relationship
2. 4. 6 Design
2. 5 Compensation
2. 6 State-Space Design
2. 6. 1 Control Law
2. 6. 2 Estimator Design
2. 6. 3 Compensation: Combined Control and Estimation
2. 6. 4 Reference Input
2. 6. 5 Integral Control
2. 7 Summary
2. 8 Problems
3 Introductory Digital Control
3. 1 Digitization
3. 2 Effect of Sampling
3. 3 PID Control
3. 4 Summary
3. 5 Problems
4 Discrete Systems Analysis
4. 1 Linear Difference Equations
4. 2 The Discrete Transfer Function
4. 2. 1 The z-Transform
4. 2. 2 The Transfer Function
4. 2. 3 Block Diagrams and State-Variable Descriptions
4. 2. 4 Relation of Transfer Function to Pulse Response
4. 2. 5 External Stability
4. 3 Discrete Models of Sampled-Data Systems
4. 3. 1 Using the z-Transform
4. 3. 2 *Continuous Time Delay
4. 3. 3 State-Space Form
4. 3. 4 *State-Space Models for Systems with Delay
4. 3. 5 *Numerical Considerations in Computing ? and ?
4. 3. 6 *Nonlinear Models
4. 4 Signal Analysis and Dynamic Response
4. 4. 1 The Unit Pulse
4. 4. 2 The Unit Step
4. 4. 3 Exponential
4. 4. 4 General Sinusoid
4. 4. 5 Correspondence with Continuous Signals
4. 4. 6 Step Response
4. 5 Frequency Response
4. 5. 1 *The Discrete Fourier Transform (DFT)
4. 6 Properties of the z-Transform
4. 6. 1 Essential Properties
4. 6. 2 *Convergence of z-Transform
4. 6. 3 *Another Derivation of the Transfer Function
4. 7 Summary
4. 8 Problems
5 Sampled-Data Systems
5. 1 Analysis of the Sample and Hold
5. 2 Spectrum of a Sampled Signal
5. 3 Data Extrapolation
5. 4 Block-Diagram Analysis of Sampled-Data Systems
5. 5 Calculating the System Output Between Samples: The Ripple
5. 6 Summary
5. 7 Problems
5. 8 Appendix
6 Discrete Equivalents
6. l Design of Discrete Equivalents via Numerical Integration
6. 2 Zero-Pole Matching Equivalents
6. 3 Hold Equivalents
6. 3. 1 Zero-Order Hold Equivalent
6. 3. 2 A Non-Causal First-Order-Hold Equivalent The Triangle-Hold Equivalent
6. 4 Summary
6. 5 Problems
7 Design Using Transform Techniques
7. 1 System Specifications
7. 2 Design by Emulation
7. 2. 1 Discrete Equivalent Controllers
7. 2. 2 Evaluation of the Design
7. 3 Direct Design by Root Locus in the z-Plane
7. 3. 1 z-Plane Specifications
7. 3. 2 The Discrete Root Locus
7. 4 Frequency Response Methods
7. 4. 1 Nyquist Stability Criterion
7. 4. 2 Design Specifications in the Frequency Domain
7. 4. 3 Low Frequency Gains and Error Coefficents
7. 4. 4 Compensator Design
7. 5 Direct Design Method of Ragazzini
7. 6 Summary
7. 7 Problems
8 Design Using State-Space Methods
8. 1 Control Law Design
8. 1. 1 Pole Placement
8. 1. 2 Controllability
8. 1. 3 Pole Placement Using CACSD
8. 2 Estimator Design
8. 2. 1 Prediction Estimators
8. 2. 2 Observability
8. 2. 3 Pole Placement Using CACSD
8. 2. 4 Current Estimators
8. 2. 5 Reduced-Order Estimators
8. 3 Regulator Design: Combined Control Law and Estimator
8. 3. 1 The Separation Principle
8. 3. 2 Guidelines for Pole Placement
8. 4 Introduction of the Reference Input
8. 4. 1 Reference Inputs for Full-State Feedback
8. 4. 2 Reference Inputs with Estimators: The State-Command Structure
8. 4. 3 Output Error Command
8. 4. 4 A Comparison of the Estimator Structure and Classical Methods
8. 5 Integral Control and Disturbance Estimation
8. 5. 1 Integral Control by State Augmentation
8. 5. 2 Disturbance Estimation
8. 6 Effect of Delays
8. 6. l Sensor Delays
8. 6. 2 Actuator Delays
8. 7 *Controllability and Observability
8. 8 Summary
8. 9 Problems
9 Multivariable and Optimal Control
9. 1 Decoupling
9. 2 Time-Varying Optimal Control
9. 3 LQR Steady-State Optimal Control
9. 3. 1 Reciprocal Root Properties
9. 3. 2 Symmetric Root Locus
9. 3. 3 Eigenvector Decomposition
9. 3. 4 Cost Equivalents
9. 3. 5 Emulation by Equivalent Cost
9. 4 Optimal Estimation
9. 4. 1 Least-5quares Estimation
9. 4. 2 The Kalman Filter
9. 4. 3 Steady-State Optimal Estimation
9. 4. 4 Noise Matrices and Discrete Equivalents
9. 5 Multivariable Control Design
9. 5. 1 Selection of Weighting Matrices Q1 and Q2
9. 5. 2 Pincer Procedure
9. 5. 3 Paper-Machine Design Example
9. 5. 4 Magnetic-Tape-Drive Design Example
9. 6 Summary
9. 7 Problems
10 Quantization Effects
10. 1 Analysis of Round-Off Error
10. 2 Effects of Parameter Round-Off
10. 3 Limit Cycles and Dither
10. 4 Summary
10. 5 Problems
11 Sample Rate Selection
11. 1 The Sampling Theorem's Limit
11. 2 Time Response and Smoothness
11. 3 Errors Due to Random Plant Disturbances
11. 4 Sensitivity to Parameter Variations
11. 5 Measurement Noise and Antialiasing Filters
11. 6 Multirate Sampling
11. 7 Summary
11. 8 Problems
1 Introduction
1. 1 Problem Definition
1. 2 Overview of Design Approach
1. 3 Computer-Aided Design
1. 4 Suggestions for Further Reading
1. 5 Summary
1. 6 Problems
2 Review of Continuous Control
2. 1 Dynamic Response
2. 1. 1 Differential Equations
2. l. 2 Laplace Transforms and Transfer Functions
2. 1. 3 Output Time Histories
2. 1. 4 The Final Value Theorem
2. 1. 5 Block Diagrams
2. 1. 6 Response versus Pole Locations
2. 1. 7 Time-Domain Specifications
2. 2 Basic Properties of Feedback
2. 2. 1 Stability
2. 2. 2 Steady-State Errors
2. 2. 3 PID Control
2. 3 Root Locus
2. 3. 1 Problem Definition
2. 3. 2 Root Locus Drawing Rules
2. 3. 3 Computer-Aided Loci
2. 4 Frequency Response Design
2. 4. 1 Specifications
2. 4. 2 Bode Plot Techniques
2. 4. 3 Steady-State Errors
2. 4. 4 Stability Margins
2. 4. 5 Bode's Gain-Phase Relationship
2. 4. 6 Design
2. 5 Compensation
2. 6 State-Space Design
2. 6. 1 Control Law
2. 6. 2 Estimator Design
2. 6. 3 Compensation: Combined Control and Estimation
2. 6. 4 Reference Input
2. 6. 5 Integral Control
2. 7 Summary
2. 8 Problems
3 Introductory Digital Control
3. 1 Digitization
3. 2 Effect of Sampling
3. 3 PID Control
3. 4 Summary
3. 5 Problems
4 Discrete Systems Analysis
4. 1 Linear Difference Equations
4. 2 The Discrete Transfer Function
4. 2. 1 The z-Transform
4. 2. 2 The Transfer Function
4. 2. 3 Block Diagrams and State-Variable Descriptions
4. 2. 4 Relation of Transfer Function to Pulse Response
4. 2. 5 External Stability
4. 3 Discrete Models of Sampled-Data Systems
4. 3. 1 Using the z-Transform
4. 3. 2 *Continuous Time Delay
4. 3. 3 State-Space Form
4. 3. 4 *State-Space Models for Systems with Delay
4. 3. 5 *Numerical Considerations in Computing ? and ?
4. 3. 6 *Nonlinear Models
4. 4 Signal Analysis and Dynamic Response
4. 4. 1 The Unit Pulse
4. 4. 2 The Unit Step
4. 4. 3 Exponential
4. 4. 4 General Sinusoid
4. 4. 5 Correspondence with Continuous Signals
4. 4. 6 Step Response
4. 5 Frequency Response
4. 5. 1 *The Discrete Fourier Transform (DFT)
4. 6 Properties of the z-Transform
4. 6. 1 Essential Properties
4. 6. 2 *Convergence of z-Transform
4. 6. 3 *Another Derivation of the Transfer Function
4. 7 Summary
4. 8 Problems
5 Sampled-Data Systems
5. 1 Analysis of the Sample and Hold
5. 2 Spectrum of a Sampled Signal
5. 3 Data Extrapolation
5. 4 Block-Diagram Analysis of Sampled-Data Systems
5. 5 Calculating the System Output Between Samples: The Ripple
5. 6 Summary
5. 7 Problems
5. 8 Appendix
6 Discrete Equivalents
6. l Design of Discrete Equivalents via Numerical Integration
6. 2 Zero-Pole Matching Equivalents
6. 3 Hold Equivalents
6. 3. 1 Zero-Order Hold Equivalent
6. 3. 2 A Non-Causal First-Order-Hold Equivalent The Triangle-Hold Equivalent
6. 4 Summary
6. 5 Problems
7 Design Using Transform Techniques
7. 1 System Specifications
7. 2 Design by Emulation
7. 2. 1 Discrete Equivalent Controllers
7. 2. 2 Evaluation of the Design
7. 3 Direct Design by Root Locus in the z-Plane
7. 3. 1 z-Plane Specifications
7. 3. 2 The Discrete Root Locus
7. 4 Frequency Response Methods
7. 4. 1 Nyquist Stability Criterion
7. 4. 2 Design Specifications in the Frequency Domain
7. 4. 3 Low Frequency Gains and Error Coefficents
7. 4. 4 Compensator Design
7. 5 Direct Design Method of Ragazzini
7. 6 Summary
7. 7 Problems
8 Design Using State-Space Methods
8. 1 Control Law Design
8. 1. 1 Pole Placement
8. 1. 2 Controllability
8. 1. 3 Pole Placement Using CACSD
8. 2 Estimator Design
8. 2. 1 Prediction Estimators
8. 2. 2 Observability
8. 2. 3 Pole Placement Using CACSD
8. 2. 4 Current Estimators
8. 2. 5 Reduced-Order Estimators
8. 3 Regulator Design: Combined Control Law and Estimator
8. 3. 1 The Separation Principle
8. 3. 2 Guidelines for Pole Placement
8. 4 Introduction of the Reference Input
8. 4. 1 Reference Inputs for Full-State Feedback
8. 4. 2 Reference Inputs with Estimators: The State-Command Structure
8. 4. 3 Output Error Command
8. 4. 4 A Comparison of the Estimator Structure and Classical Methods
8. 5 Integral Control and Disturbance Estimation
8. 5. 1 Integral Control by State Augmentation
8. 5. 2 Disturbance Estimation
8. 6 Effect of Delays
8. 6. l Sensor Delays
8. 6. 2 Actuator Delays
8. 7 *Controllability and Observability
8. 8 Summary
8. 9 Problems
9 Multivariable and Optimal Control
9. 1 Decoupling
9. 2 Time-Varying Optimal Control
9. 3 LQR Steady-State Optimal Control
9. 3. 1 Reciprocal Root Properties
9. 3. 2 Symmetric Root Locus
9. 3. 3 Eigenvector Decomposition
9. 3. 4 Cost Equivalents
9. 3. 5 Emulation by Equivalent Cost
9. 4 Optimal Estimation
9. 4. 1 Least-5quares Estimation
9. 4. 2 The Kalman Filter
9. 4. 3 Steady-State Optimal Estimation
9. 4. 4 Noise Matrices and Discrete Equivalents
9. 5 Multivariable Control Design
9. 5. 1 Selection of Weighting Matrices Q1 and Q2
9. 5. 2 Pincer Procedure
9. 5. 3 Paper-Machine Design Example
9. 5. 4 Magnetic-Tape-Drive Design Example
9. 6 Summary
9. 7 Problems
10 Quantization Effects
10. 1 Analysis of Round-Off Error
10. 2 Effects of Parameter Round-Off
10. 3 Limit Cycles and Dither
10. 4 Summary
10. 5 Problems
11 Sample Rate Selection
11. 1 The Sampling Theorem's Limit
11. 2 Time Response and Smoothness
11. 3 Errors Due to Random Plant Disturbances
11. 4 Sensitivity to Parameter Variations
11. 5 Measurement Noise and Antialiasing Filters
11. 6 Multirate Sampling
11. 7 Summary
11. 8 Problems
猜您喜欢