数据库挖掘/数据仓库
-
数据掘金谭磊 著电商坐拥互联网行业最丰富的用户数据金矿,却很少有人从中挖掘出真金白银。《数据掘金——电子商务运营突围》一书旨在打破这一困境,一步一步引导从业者以数据为核心来运营网站或网店。本书用浅显的文字与独特的视角,不仅成功解读电商数据运营之惑,更呈现大量数据分析和挖掘的必要基础知识及实用相关工具。在通过阅读轻松掌握电商数据运营须关注的要点与方法之后,读者还可有针对性地从书中选择学习如何利用数据来完成——流量获取优化、广告投放、客户分析,以及客户价值提升等一系列电商运营要务。《数据掘金——电子商务运营突围》一书主要写给电商从业人员,无论是中小电子商务的运营人员、数据分析人员,还是大公司负责电子商务的策略官、市场官和运营官,都能从本书中找到自己所需且急需的有价值内容。
-
大数据范承工,周宝曜,刘伟 编《大数据:战略·技术·实践》从实际技术解决方案出发,提出了大数据技术四层架构,即:基础设施层、管理层、分析层、应用层。在此基础上,全面剖析了当前大数据领域中的主流技术,并配以行业应用实例和一线研发人员的独到见解。力求使读者能够通过阅读此书,全面了解当前大数据技术动态和发展趋势,并可针对自己面临的大数据问题找到可行的解决方案。《大数据:战略·技术·实践》是一本不错的技术普及读物。可作为软件开发者、数据存储处理工程师、数据分析师等工程技术人员的参考书,亦可作为高等学校相关专业课程的教材或参考书。
-
大数据挑战与NoSQL数据库技术陆嘉恒 著《大数据挑战与NoSQL数据库技术》共分为三部分。理论篇重点介绍大数据时代下数据处理的基本理论及相关处理技术,并引入NoSQL数据库;系统篇主要介绍了各种类型NoSQL数据库的基本知识;应用篇对国内外几家知名公司在利用NoSQL数据库处理海量数据方面的实践做了阐述。《大数据挑战与NoSQL数据库技术》对大数据时代面临的挑战,以及NoSQL数据库的基本知识做了清晰的阐述,有助于读者整理思路,了解需求,并更有针对性、有选择地深入学习相关知识。
-
New Internet谭磊 著《New Internet:大数据挖掘》全面地介绍了如何使用数据挖掘技术从各种结构的(数据库)或非结构(Web)的海量数据中提取和产生业务知识。作者梳理了各种数据挖掘常用算法和信息采集技术,系统地描述了实际应用时如何在互联网日志分析、电子邮件营销、互联网广告和电子商务上进行数据挖掘,着重介绍了数据挖掘的原理和算法在互联网海量数据挖掘中的应用。《New Internet:大数据挖掘》主要特点:全面介绍了数据挖掘和大数据的基本概念和技术;大量采用了实际案例,实用性强;详细介绍了大数据挖掘领域最新的商业应用。
-
机器学习Drew Conway & John Myles White 著,陈开江 刘逸哲 孟晓楠 译罗森林 审校O’Reilly Media通过图书、杂志、在线服务、调查研究和会议等方式传播创新知识。自1978年开始,O’Reilly一直都是前沿发展的见证者和推动者。超级极客们正在开创着未来,而我们关注真正重要的技术趋势——通过放大那些“细微的信号”来刺激社会对新科技的应用。作为技术社区中活跃的参与者,O’Reilly的发展充满了对创新的倡导、创造和发扬光大。O’Reilly为软件开发人员带来革命性的“动物书”;创建第一个商业网站(GNN);组织了影响深远的开放源代码峰会,以至于开源软件运动以此命名;创立了Make杂志,从而成为DIY革命的主要先锋;公司一如既往地通过多种形式缔结信息与人的纽带。O’Reilly的会议和峰会集聚了众多超级极客和高瞻远瞩的商业领袖,共同描绘出开创新产业的革命性思想。作为技术人士获取信息的选择,O’Reilly现在还将先锋专家的知识传递给普通的计算机用户。无论是通过书籍出版,在线服务或者面授课程,每一项O’Reilly的产品都反映了公司不可动摇的理念——信息是激发创新的力量。
-
数据挖掘原理与商务应用朱小栋,徐欣 编著朱小栋、徐欣编著的《数据挖掘原理与商务应用(普通高等院校电子商务十二五规划重点教材)》的内容涵盖如何利用相关软件产品实现数据挖掘的经典算法和技术,还涵盖数据挖掘技术在商务领域中的应用。本书既适合计算机应用技术专业,也适合经管类信息管理与电子商务专业的学生学习。书中既注重从计算机应用角度来讲解数据挖掘,又注重数据挖掘与商务智能、管理科学、决策支持系统的结合。
-
数据挖掘技术(美)林那夫 (Gordon S. Linoff)(美)贝里 (Michael J.A.Berry)著 巢文涵,张小明,王芳 译谁将是忠实的客户?谁将不是呢?哪些消息对哪些客户细分最有效?如何最大化客户的价值?如何将客户的价值最大化?本书提供了强大的工具,可以从上述和其他重要商业问题所在的公司数据库中提取它们的答案。自本书第1版问世以来,数据挖掘已经日益成为现代商业不可缺少的工具。在这个最新版本中,作者对每个章节都进行了大量的更新和修订,并且添加了几个新的章节。本书保留了早期版本的重点,指导市场分析师、业务经理和数据挖掘专家利用数据挖掘方法和技术来解决重要的商业问题。在不牺牲准确度的前提下,为了简单起见,即使是复杂的主题,作者也进行了简洁明了的介绍,并尽量减少对技术术语或数学公式的使用。每个技术主题都通过案例研究和源自作者经验的真实案例进行说明,每章都包含了针对从业者的宝贵提示。书中介绍的新技术和更为深入的技术包括:线性和逻辑回归模型、增量响应(提升)建模、朴素贝叶斯模型、表查询模型、相似度模型、径向基函数网络、期望值最大化(EM)聚类和群体智慧。新的章节专门讨论了数据准备、派生变量、主成分分析和其他变量减少技术,以及文本挖掘。在建立了全面的数据挖掘应用业务环境,并介绍了所有数据挖掘项目通用的数据挖掘方法论的各个方面之后,本书详细介绍了每个重要的数据挖掘技术。《数据挖掘技术(第3版)——应用于市场营销、销售与客户关系管理》的主题包括:◆ 如何创建稳定、持久的预测模型◆ 数据准备和变量选择◆用诸如回归、决策树、神经网络、基于记忆的推理之类的有指导技术来建模特定目标◆用诸如聚类、关联规则和链接分析之类的无指导技术来发现模式◆建模业务的事件发生时间问题,如下一次购买时间和预期的剩余生存期等◆ 挖掘非结构化文本
-
数据挖掘算法及其应用研究蔡丽艳 著数据挖掘是一个融合了数据库技术、人工智能、机器学习、统计学、知识工程、面向对象方法等新技术的多学科交叉的研究领域。今天,越来越多的人们投入数据挖掘技术的研究领域,各种算法的不断改进和推陈出新,再加上高性能的关系数据库技术以及数据仓库技术的成熟,使得数据挖掘技术有了飞速的发展,并使数据挖掘技术进入了实用的阶段。《数据挖掘算法及其应用研究》结合大量国内外最近几年数据挖掘的最新资料和作者的研究成果,系统地介绍了数据挖掘算法以及相关的技术及其在一些领域中的应用。《数据挖掘算法及其应用研究》共分2个部分,第1部分介绍数据挖掘算法,包括决策树算法、贝叶斯网络算法、人工神经网络、支持向量机、关联规则、聚类分析以及一些数据挖掘的相关技术等。第2部分主要讨论数据挖掘的应用研究,包括在信用评估模型中的应用和数据挖掘技术在决策支持系统中的应用。《数据挖掘算法及其应用研究》的读者可以是对数据挖掘感兴趣的计算机专业人士,也可供数据挖掘、机器智能、商业数据分析等领域的科技人员和高校师生参考。
-
数据挖掘与R语言(葡)Luís Torgo著 李洪成 陈道轮 吴立明译本书首先简要介绍了R软件的基础知识(安装、R数据结构、R编程、R的输入和输出等)。然后通过四个数据挖掘的实际案例(藻类频率的预测、证券趋势预测和交易系统仿真、交易欺诈预测、微阵列数据分类)介绍数据挖掘技术。这四个案例基本覆盖了常见的数据挖掘技术,从无监督的数据挖掘技术、有监督的数据挖掘技术到半监督的数据挖掘技术。全书以实际问题、解决方案和对解决方案的讨论为主线来组织内容,脉络清晰,并且各章自成体系。读者可以从头至尾逐章学习,也可以根据自己的需要进行学习,找到自己实际问题的解决方案。 本书不需要读者具备R和数据挖掘的基础知识。不管是R初学者,还是熟练的R用户都能从书中找到对自己有用的内容。读者既可以把本书作为学习如何应用R的一本优秀教材,也可以作为数据挖掘的工具书。Data Mining with R:Learning with Case Studies by Luís Torgo(ISBN978?1?4398?1018?7).Copyright ?2011 byTaylor and Francis Group, LLC.Authorized translation from the English language edition publishedby CRC Press, part of Taylor & Francis Group LLC; All rightsreserved.China Machine Pressisauthorized to publish anddistribute exclusively the Chinese (Simplified Characters) languageedition?This edition is authorized for salein the People?sRepublic of China only (excluding Hong Kong, Macao SAR andTaiwan).No part of this publication may be reproduced ordistributed in any form or by any means, or stored in a database orretrieval system, without the prior written permission of thepublisher.Copies of this book sold without a Taylor & Francis sticker onthe cover are unauthorized and illegal.
-
数据挖掘理论与技术罗森林,马俊,潘丽敏 编著《数据挖掘理论与技术》梳理了数据挖掘理论与技术的 知识点,注重领域内核心思想、原理、方法的论述及国内外最 新研究进展的融入,内容上系统、全面、先进。全书共9章,主要包括数据 挖掘基础知识,概率论与 数理统计,数据挖掘效果评价,数据预处理,数据仓库,数据分类分析,数据聚类分析,关联规则发 现,统计预测方法等。在讨论算法的同时引入应用实例,强调应用方法包 括算法特点、参数选择、结 果评价等方面的分析,理论联系实际,有利于算法的快速掌握和有效运用。《数据挖掘理论与技术》可供计算机科学与技术、生命信息工程、软 件工程、通信与信息系统等相关学科、专业的学 生作为教材或参考书,同时也可供科研人员参考和感兴趣者自学使用。