人工智能
-
Python机器学习项目实战(德)阿列克谢·格里戈里耶夫暂缺简介... -
机器学习和深度学习文卡塔·雷迪·科纳萨尼暂缺简介... -
人工智能与博弈对抗陈少飞,苏炯铭,项凤涛本书以人工智能方法解决博弈对抗问题为主线,介绍策略搜索与机器博弈、机器学习与数据对抗、强化学习与对抗决策、博弈论与均衡策略计算等理论基础以及其在求解博弈对抗问题中的应用,探讨人工智能对军事博弈对抗的影响。 -
人工智能计算思维启蒙教程周嵬,陈弘本书基于循序渐进培养儿童数学核心概念和逻辑思维的培养目标,用故事情景和实物化编程游戏工具,引导孩子在角色扮演和对图形化程序指令符号的理解执行过程中,训练孩子用计算思维解决问题,使抽象枯燥的数学教育和编程教育变成生动活泼、充满童趣,又富有互动性的学习体验。 附带教学教案和教具 -
计算机视觉的对象级场景理解及其应用李青本书围绕图像场景内容理解这个核心,从图像场景的语义理解、图像空间的几何理解、对象级场景解析三个方面进行详细阐述。从章节结构来说,第1章绪论部分概述了图像场景内容理解的背景与意义以及发展历程;第2章、第3章的内容分别对应场景语义和场景几何的理解,是从场景级图像内容理解入手;在第4章转入对象级图像内容理解;第5章概述了对象级场景理解在人工智能中的应用。本书适合人工智能、智能车辆、视觉处理等领域的专业技术人员阅读使用。 -
置信规则分类方法与应用焦连猛本书面向复杂不确定环境下可解释分类的需求,重点阐述作者提出的置信规则分类方法体系及其在实际工程中的应用。全书主要内容包括不可靠数据鲁棒置信规则分类、面向大数据的紧凑置信规则分类、数据与知识双驱动的复合置信规则分类、精确且可解释的置信关联规则分类、面向高维数据的置信关联规则分类、面向软标签数据的置信关联规则分类等方面的理论进展,以及在编队目标识别、多框架融合目标识别、多属性决策融合目标威胁评估等实际问题中的应用。 -
嵌入式人工智能杨峰暂缺简介... -
Scikit-Learn、Keras和TensorFlow的机器学习实用指南奥雷利安·吉翁通过一系列最新的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、最小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。在更新的第3版中,作者Aurélien Géron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。 -
PyTorch高级机器学习实战 ChatGPT背后的逻辑王宇龙本书讲解了经典的高级机器学习算法原理与知识,包括常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习等内容,同时更强调动手实践。所有算法均利用PyTorch计算框架进行实现,并且在各章节配备实战环节,内容涵盖点击率预估、异常检测、概率图模型变分推断、高斯过程超参数优化、深度强化学习智能体训练等内容。 本书附赠所有案例的源代码及各类学习资料来源,适合具有一定编程基础的人工智能爱好者学习,也是相关从业者和研究人员的学习指南。 -
利用Python实现概率、统计及机器学习方法何塞·安平科本书针对Python 3.6+版本进行了全面更新,涵盖了在这些领域中使用Python组件演示的概率、统计和机器学习之间的链接的关键思想。所提供的Python代码、所有的图形和数值结果都是可重复的。作者通过使用多种分析方法和Python代码处理有意义的示例来开发机器学习中的关键直觉,从而将理论概念与具体实现联系起来。对某些重要结果也给出了详细的证明。
