人工智能
-
TensorFlow机器学习实战指南尼克·麦克卢尔(Nick McClure) 著,李飞 刘凯 卢建华 李静 赵秀丽 译本书由数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践。真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带领读者由浅入深系统掌握TensorFlow机器学习算法及其实现。本书第1章和第2章介绍了关于TensorFlow使用的基础知识,后续章节则针对一些典型算法和典型应用场景进行了实现,并配有较详细的程序说明,可读性非常强。读者如果能对其中代码进行复现,则必定会对TensorFlow的使用了如指掌。 -
深度学习理论与实战李理 著本书不仅包含人工智能、机器学习及深度学习的基础知识,如卷积神经网络、循环神经网络、生成对抗网络等,而且也囊括了学会使用 TensorFlow、PyTorch 和 Keras 这三个主流的深度学习框架的*小知识量;不仅有针对相关理论的深入解释,而且也有实用的技巧,包括常见的优化技巧、使用多 GPU 训练、调试程序及将模型上线到生产系统中。本书希望同时兼顾理论和实战,使读者既能深入理解理论知识,又能把理论知识用于实战,因此本书每介绍完一个模型都会介绍其实现,读者阅读完一个模型的介绍之后就可以运行、阅读和修改相关代码,从而可以更加深刻地理解理论知识。 -
Python机器学习赵涓涓,强彦 著本书以案例驱动的方式讲解机器学习算法的知识点,并以Python语言作为基础开发语言实现算法,包括目前机器学习主流算法的原理、算法流程图、算法的详细设计步骤、算法实例、算法应用、算法的改进与优化等环节。 全书共分 17 章,前两章介绍机器学习与 Python 语言的相关基础知识,后面各章以案例的方式分别介绍线性回归算法、逻辑回归算法、K *近邻算法、PCA 降维算法、k-means算法、支持向量机算法、AdaBoost算法、决策树算法、高斯混合模型算法、随机森林算法、朴素贝叶斯算法、隐马尔可夫模型算法、BP 神经网络算法、卷积神经网络算法、递归神经网络算法。 本书适合作为高等院校人工智能、大数据、计算机科学、软件工程等相关专业本科生和研究生有关课程的教材,也适用于各种计算机编程、人工智能学习认证体系,还可供广大人工智能领域技术人员参考。 -
基于TensorFlow的深度学习Bharath,Ramsundar,Reza,Bosagh,Zadeh ... 著学习TensorFlow基础,包括如何进行基本运算。 建立简单的学习系统来理解数学基础。 深入理解在数千应用中效果良好的全连接深度网络。 使用超参优化,将原型转换成高质量的模型。 使用卷积神经网络处理图像。 使用循环神经网络处理自然语言数据集。 使用强化学习解决譬如三连棋等游戏。 使用GPU、TPU等硬件训练深度网络。 -
人工智能读本《人工智能读本》编写组 编本书对我国人工智能的发展状况、国家战略,及其在经济发展、民生改善、政府治理等方面的广泛应用作了简明通俗的阐释;同时,还阐述了世界范围内人工智能的发展历史、国外主要国家和地区人工智能的发展现状、人工智能的未来前景等。 书中包含大量应用案例,涉及制造业、农业、金融、交通、医疗、教育、家居、政府治理、政务服务等领域。突出介绍案例应用场景、核心优势、所解决的难点痛点,展现了人工智能带来的生产生活方式、交互方式、治理模式变革,为人们了解人工智能、用好人工智能提供切合实际的参考。 -
产品经理进阶林中翘 著本书根据人工智能领域产品经理的能力要求与知识体系,从原理到应用介绍人工智能的相关技术,全面阐述如何进阶为一名合格的人工智能产品经理。本书共分为13章,其中第1~3章介绍机器学习能做什么及如何去做,第4~10章介绍7种基础算法的原理与商业化应用,第11~13章介绍深度学习在图像识别、自然语言处理与AI绘画三个方向的发展与成果。本书不局限于从数学角度推导各类机器学习算法的原理,而是配合大量案例,由浅入深地讲述什么是机器学习、机器学习如何解决问题及机器学习需要产品经理做什么。本书能够帮助初入人工智能领域的产品经理建立对算法的理解,并将这些知识融入不同领域的业务中,发现更多的应用场景,创造更多的应用可能。 -
人脸特征表达与识别狄岚,梁久祯 著《人脸特征表达与识别》介绍近年来人脸识别领域的关键技术,如特征提取、表示,机器学习以及模式识别方法,重点介绍人脸特征的光照预处理、图像粒表示与流形学习、稀疏表示与字典学习、姿态表情识别、2D矫正与人脸识别以及深度学习人脸识别等内容。 -
视觉SLAM十四讲高翔 等 著本书系统介绍了视觉 SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动、非线性优化,又包括计算机视觉的算法实现,例如多视图几何、回环检测等。此外,我们还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。本书可以作为对 SLAM 感兴趣的研究人员的入门自学材料,也可以作为 SLAM 相关的高校本科生或研究生课程教材使用。 -
深度学习原理与TensorFlow实践黄理灿 著本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python 编程基础、TensorFlow编程基础、TensorFlow模型、 TensorFlow编程实践、TensorFlowLite 和 TensorFlow.js、TensorFlow案例:医学应用和Seq2Seq+attention 模型及其应用案例。本书*大特色是既有由浅入深的理论知识,又有从入门到高深的应用编程的技术知识。本书涵盖了深度学习的理论、Python 编程语言以及TensorFlow编程知识和代码解读,为深度学习初学者以及进阶人员提供了详尽的必要知识。 本书可用于大学本科生高年级以及研究生人工智能教材,也可作为应用领域技术人员、工程技术人员和科学研究工作者的参考资料。 -
智能信息处理技术原理与应用蒋海峰,王宝华 著本教材的内容涉及模糊理论、数据融合、神经网络、遗传算法及传感技术等相关内容,并着重介绍数据融合技术的原理、特点及具体应用方法,在目前多传感器数据融合技术研究成果的基础上进行系统解析,分析特点,论述不足,为数据融合技术的研究提供科学合理的依据,达到促进智能信息处理技术可持续发展的目标。
