人工智能
-
人工智能与用户体验[美] 刘嘉闻(Gavin Lew) 等 著,周子衿 译《人工智能与用户体验:以人为本的设计》结合人工智能崛起的大背景,讲述了如何从人机交互的角度来设计AI产品和服务,如何让AI真正赋能于人。只有真正对人们有用,AI才能迎来真正的春天。《人工智能与用户体验:以人为本的设计》是一本科普书,尤其适合对AI及其未来影响感兴趣的读者,包括涉及AI产品和服务的设计师和产品经理以及对AI感兴趣的未来学家和技术爱好者等。
-
人工智能算法大全李一邨 著本书的编程语言以MATLAB为主,分别从学习方式和理论知识两个方面来对机器学习(实现人工智能的方法)的算法进行分类介绍。通过阅读本书,读者可以对人工智能的子集——机器学习形成一个系统、全面、完整的认识,并且在今后的研究工作中逐步拓展,*终形成自己的体系。全书共6篇,分别为特征处理算法、分类和聚类算法、神经网络算法、优化算法、基于不同数学思想的算法以及集成算法,每一篇都对该类别中常见算法的思想、流程、核心知识和优缺点等内容进行了详细介绍,并通过实际的案例分析和代码展示,对算法的具体应用进行了完整解析。 本书适用的读者对象包括金融机构的量化投资经理、科研工作者、互联网企业的算法工程师、大中专院校相关专业师生,以及其他对实现人工智能的机器学习技术感兴趣的读者。
-
深度学习与目标检测涂铭,金智勇 著这是一本从工具、原理、算法3个维度指导读者零基础快速掌握目标检测技术及其应用的入门书。 两位作者是资深的AI技术专家和计算机视觉算法专家,在阿里、腾讯、百度、三星等大企业从事计算机视觉相关的工作多年,不仅理论功底扎实、实践经验丰富,而且知道初学者进入计算机视觉领域的痛点和难点。据此,两位作者编写了这本针对目标检测初学者的入门书,希望从知识体系和工程实践的角度帮助读者少走弯路。 第1~2章是目标检测的准备工作,主要介绍了目标检测的常识、深度学习框架的选型、开发环境的搭建以及数据处理工具的使用。 第3~5章是目标检测的技术基础,主要讲解了数据预处理和卷积神经网络等图像分类技术的基础知识。 第6章比较详细地介绍了香港中文大学的开源算法库mmdetection。 第7~10章详细地讲解了目标检测的概念、原理、一阶段算法、二阶段算法以及提升算法性能的常用方法。 第11章简单介绍了目标检测的相关案例(以工业为背景),以帮助读者构建一个更完整的知识体系。
-
统计策略搜索强化学习方法及应用赵婷婷 著智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的最近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。最后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
-
计算机视觉袁雪 著人工智能正在成为全世界产业变革的方向,处于第四次科技革命的核心地位。计算机视觉(Computer Vision)就是利用摄像机、算法和计算资源为人工智能系统按上“眼睛”,让其可以拥有人类的双眼所具有的前景与背景分割、物体识别、目标跟踪、判断决策等功能。计算机视觉系统可以让计算机看见并理解这个世界的“信息”,从而替代人类完成重复性工作。目前计算机视觉领域热门的研究方向有物体检测与识别、语义分割、目标跟踪等。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》围绕着计算机视觉的关键技术,介绍基于深度学习计算机视觉的基础理论及主要算法。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》结合常见的应用场景和项目实例,循序渐进地带领读者进入美妙的计算机视觉世界。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》共分为11章,第1章为人工智能概述;第2~5章介绍计算机视觉的几种关键技术,即图像分类、目标检测、图像分割和目标跟踪,并将这四项关键技术组合完成人工智能的实际应用;第6、7章介绍人工智能的两个典型应用:文字检测与识别系统及多任务深度学习系统;第8章介绍一种非常有意思的深度学习网络——对抗生成神经网络;第9章介绍制作训练和测试样本的方法;第10章介绍如何安装TensorFlow、KerasAPI及相关介绍;第11章介绍综合实验。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》提供了大量项目实例及代码解析,均是基于Python语言及TensorFlow、KerasAPI的。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》的每章均配有微课视频,扫描书中的二维码,可观看作者的视频讲解。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》不仅可以作为大学计算机及相关专业的教材,也适合自学者及人工智能开发人员参考使用。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》作者根据在计算机视觉领域多年的研发经验编写了《计算机视觉》一书。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》理论与实践并重,收集并整理了国内外的新科研成果,结合实际项目实例,循序渐进地引导读者进入美妙的计算机视觉世界,基于Python语言及TensorFlow、KerasAPI,配备了大量的源代码及代码解析,帮助广大初学者掌握计算机视觉系统的开发方法。《计算机视觉:Python+TensorFlow+Keras深度学习实战(微课视频版)》特点:项目带领,任务驱动教、学、做一体,注重读者工程实践能力的培养以读者认知过程为导向设计教材逻辑与章节内容介绍新近科研成果,使读者了解计算机视觉领域的前沿技术开源全套代码资源,配备详细视频讲解,助力初学者快速入门
-
机器学习算法竞赛实战王贺,刘鹏,钱乾 著本书是算法竞赛领域一本系统介绍竞赛的图书,书中不仅包含竞赛的基本理论知识,还结合多个方向和案例详细阐述了竞赛中的上分思路和技巧。全书分为五部分:第一部分以算法竞赛的通用流程为主,介绍竞赛中各个部分的核心内容和具体工作;第二部分介绍了用户画像相关的问题;第三部分以时间序列预测问题为主,先讲述这类问题的常见解题思路和技巧,然后分析天池平台的全球城市计算AI 挑战赛和 Kaggle 平台的Corporación Favorita Grocery Sales Forecasting;第四部分主要介绍计算广告的核心技术和业务,包括广告召回、广告排序和广告竞价,其中两个实战案例是2018 腾讯广告算法大赛——相似人群拓展和Kaggle 平台的TalkingData AdTracking Fraud Detection Challenge;第五部分基于自然语言处理相关的内容进行讲解,其中实战案例是Kaggle 平台上的经典竞赛Quora Question Pairs。 本书适合从事机器学习、数据挖掘和人工智能相关算法岗位的人阅读。
-
户外未知环境中的自主移动机器人朱晓蕊 著《户外未知环境中的自主移动机器人》探讨了户外自主移动机器人系统的很多方面,包括机构设计、运动控制、定位和制图等。首先,从户外移动机器人的运动机构开始讨论,通过移动性和可操纵性介绍和分析了具有柔性梁结构的轮式模块化移动机器人(CFMMR)原型;然后,引入了一个通用的协作运动控制和传感器架构,并定义了架构中每个子系统及其相应的设计要求,包括运动学控制子系统、动力学控制子系统和传感子系统;然后,讨论了如何设计这些子系统以满足机器人控制系统的设计要求,并详尽阐述了具体的算法且在CFMMR上进行了实验验证。 《户外未知环境中的自主移动机器人》针对户外未知环境中的自主移动机器人讨论架构和算法设计,希望激发自主移动机器人、人工智能甚至自动驾驶技术的研发人员去开展更多新的研究。
-
智能机器人养成记[英] 马克·H.李(Mark H.Lee) 著,刘红泉 译在本书中,作者先描述了人工智能的缺陷(一个关键的缺点是:它没有具象化),然后提出了一种制造类人机器人的不同方法:成长型机器人,它受到成长心理学及其对早期婴儿行为的描述的启发。他讲述了自己对iCub类人机器人的实验,以及它从新生儿水平到相当于9个月大的婴儿的能力水平的成长,解释了iCub如何从自己的经验中学习。
-
深度学习基础与工程实践郭泽文 著本书以工程实践为主线,基于TensorFlow 2.0软件框架详细介绍了深度学习的工作原理和方法,并以实际代码为例,剖析了构建神经网络模型的流程、全连接网络的运行原理、卷积神经网络的结构与运行机制、循环神经网络的结构与运行机制,讨论了使用Dense、Conv1D、Conv2D、SimpleRNN、LTSM、GRU、Bidirectional等深度学习模型解决计算机视觉、序列问题的方法,并在此基础上基于具体示例介绍了深度学习的高阶实践。 本书致力于为人工智能算法工程师及从事人工智能引擎相关工作的人提供理论与实践指导,适合对人工智能及其应用感兴趣的读者阅读。
-
深度学习入门与实践鲁鸣鸣 编本书首先以图文并茂的形式深入浅出地介绍了机器学习和深度学习的基本概念,阐明了机器学习和深度学习的本质是对待学习的函数进行拟合这一基本概念。通过介绍基础的线性回归、分类、逻辑回归等机器学习问题及其关系,建立机器学习与概率分布、贝叶斯理论、矩阵运算之间的关联,并以较为直观同时也兼具理论高度的方式引出逻辑回归与人工神经元之间的关联,从而为人工(深度)神经网络的引入做好铺垫。接着,本书从深度学习基本概念、典型模型和应用、反向传播算法、编程实现、训练技巧等方面较为详尽地介绍了深度学习的基础内容。最后通过介绍卷积神经网络、词嵌入、循环神经网络等典型的深度学习模型来进一步提升初学者对深度学习的认识。本书能够帮助中南大学以及其他高校的大数据专业、人工智能专业的本科生用最快的速度入门深度学习。