人工智能
-
利用Python实现概率、统计及机器学习方法何塞·安平科本书针对Python 3.6+版本进行了全面更新,涵盖了在这些领域中使用Python组件演示的概率、统计和机器学习之间的链接的关键思想。所提供的Python代码、所有的图形和数值结果都是可重复的。作者通过使用多种分析方法和Python代码处理有意义的示例来开发机器学习中的关键直觉,从而将理论概念与具体实现联系起来。对某些重要结果也给出了详细的证明。
-
人工智能查鲁·C,阿加沃尔本书介绍了经典人工智能(逻辑或演绎推理)和现代人工智能(归纳学习和神经网络)之间的覆盖范围。分别阐述了三类方法:演绎推理方法: 这些方法从预先定义的假设开始,并对其进行推理,以得出合乎逻辑的结论。底层方法包括搜索和基于逻辑的方法。这些方法在第 1 章到第 5 章中讨论。归纳学习方法:这些方法从例子开始,并使用统计方法来得出假设。示例包括回归建模、支持向量机、神经网络、强化学习、无监督学习和概率图形模型。这些方法在第 6 章到第 11 章中讨论。整合推理和学习:第 12 章和第 13 章讨论整合推理和学习的技术。例子包括知识图谱和神经符号人工智能的使用。
-
企业数字化转型人工智能技术落地指南金玮暂缺简介...
-
群体智能与演化博弈张建磊本书总体目标是介绍群体智能与演化博弈交叉领域的现状、发展趋势和重要应用,为读者在群体智能、无人系统、仿生智能、对抗与博弈等领域开展跨学科研究和技术开发打下基础。全书共7章,主要内容包括绪论、基于粒子群优化算法的群体演化博弈、有限群体中任务分配博弈的动力学、带有破坏者的任务分配博弈演化动力学、基于演化博弈的多智能体覆盖控制、基于演化博弈理论的集群编队、基于深度优先策略的区域协同搜索等。通过本书的学习,读者可以了解群体智能的基础知识,学习如何应用博弈理论对集群的动力学属性进行建模分析、如何设计并实现群体智能的算法,实现群体的控制、建模、任务分配与协作。 本书既可作为自动化、计算机科学与技术、电子信息工程、机器人工程等专业研究生和高年级本科生的教材,也可作为相关行业科研人员的参考书。
-
人工智能训练师基础武卫东,盛鹏勇,李健,唐雄飞,马玲玉本书基于《人工智能训练师国家职业技能标准(2021年版)》,对“人工智能训练师”这一新兴职业给予了清晰的描述。全书从人工智能的相关技术入手,介绍了人工智能领域的发展历程和相关知识,重点讲述了人工智能训练师的职业技能鉴定要求和各等级从业人员工作要求,讲述了人工智能训练师相关的工作内容及流程方法,包括数据采集和处理、数据标注、智能系统运维、业务分析、智能训练、智能系统设计、培训与指导等方面,对人工智能训练相关工作做了系统的描述和指导。本书可以帮助新入行的人员较快熟悉行业知识和岗位技能,帮助已入行的人员明晰自身的岗位能力定位和职业发展方向。
-
时间序列分析实战艾琳·尼尔森,Aileen Nielsen时间序列在现代生活中无处不在,它也是数据分析的重要对象。本书介绍时间序列分析的实用技巧,展示如何结合机器学习方法和传统的统计方法来分析各类时间序列数据,并提供Python示例和R示例。本书共有17章,首先概览时间序列分析的历史,然后介绍数据的获取、清洗、模拟和存储,接着关注可用于时间序列分析的建模技术,最后探讨时间序列分析在几个常见领域中的应用。 本书适合与时间序列打交道的数据分析师、数据工程师、数据科学家及其他相关从业人员阅读。
-
人脸识别算法、优化与信息安全王蒙,刘庆庆暂缺简介...
-
智能控制导论郑南宁,王飞跃为落实国家战略,加速新一代信息技术人才培养,满足数字经济发展的人才需求,为实现经济高质量发展提供人才支撑,中国科协策划并主编“中国科协新一代信息技术系列丛书”,中国自动化学会受中国科协委托组编《智能控制导论》一书。本书系统地阐述了主流的智能控制概念、框架、流程、方法、算法及典型案例,希望有助于读者全面深入地了解智能控制理论与方法。
-
认知规律启发的显著性物体检测方法与评测范登平《认知规律启发的显著性物体检测方法与评测》的作者范登平博士在苏黎世联邦理工学院全职从事研究工作。本书的研究内容紧密结合了人类视觉认知机制和显著性计算技术,所提出的核心技术为计算机视觉的诸多任务提供了重要的技术基础。由范博士设计的两项指标已经成为SOD领域评测模型的黄金标准,为该领域的学术共同体提供了更加全面、客观的结果。《认知规律启发的显著性物体检测方法与评测》共七章:第1章 绪论,介绍本书的研究背景并简述研究目标和主要贡献。第2章 相关工作,介绍相关工作,包括图像显著性物体检测、视频显著性物体检测、非二进制显著性物体检测评价指标和二进制显著性物体检测评价指标。第3章 富上下文环境下的显著性物体检测数据集与评测,详细介绍富上下文环境下的显著性物体检测数据集与评测,包括显著性物体检测数据集的构建和基于属性的评测。第4章 基于注意力转移机制的视频显著性物体检测,详细介绍本书提出的基于注意力转移机制的视频显著性物体检测技术、新的视频显著物体检测数据集以及模型的评测。第5章 基于结构相似性的显著性检测评价指标,详细讨论本书提出的基于结构相似性的显著性检测评价指标,并利用该评价指标对多种基于深度学习的模型进行评测。第6章 基于局部和全局匹配的显著性物体检测评价指标,讨论了本书提出的基于局部和全局匹配的显著性物体检测评价指标,该指标主要针对物体分割之后的二值显著图的评价,通过一系列元度量实验,证明了该指标*符合人眼的感知。第7章 总结与展望,总结全书并讨论未来的研究方向。
-
解码智能时代信风智库本书围绕建设智慧城市主题,结合国际国内智慧城市建设案例,客观展现大数据智能化推动城市创新发展的力量,积极探索打造国际化、绿色化、智能化、人文化美好城市的路径。