人工智能
-
人工智能软件测试技术王月春,高凌燕,张倩,吕庆本书介绍了软件测试的基本概念、原理、基本方法及测试过程等内容,包括软件测试技术概述、静态测试、黑盒测试、白盒测试、集成测试、系统测试、测试报告管理、智能软件测试以及单元测试框架Junit、压力测试工具Jmeter的使用方法,同时还介绍了软件测试与质量保证等内容。 本书为软件测试的基础教材,旨在让学生能够熟练地对实际软件进行有效测试,为后续核心课程的学习积累知识,培养学生专业技能,满足软件开发、软件测试、软件质量保障等技能要求。 本书适合作为高等院校计算机相关专业学生的教材,也可作为软件测试及软件开发人员的参考书。 -
人工智能技术导论金雷本书主要从技术原理和技术应用两方面讲述人工智能技术。全书共12章,内容涵盖人工智能概述、人工智能软硬件、人工智能与数据、计算机视觉、语音识别、自然语言理解、知识推理、经典机器学习、深度学习与强化学习、自动驾驶、智能问答及人工智能伦理等。 本书不仅可作为高等院校智能科学与技术、计算机科学、电子科学与技术、控制科学与工程等专业的低年级本科生或专科生的教材,同时也可作为人文社科类各专业本科生的通识课程教材,还可为对人工智能技术及其应用感兴趣的工程技术人员提供参考。 -
深度匹配学习徐君,何向南,李航本书从语义匹配的角度解决搜索引擎和推荐系统的关键痛点,为构建解决语义匹配问题的深度学习模型提供了通用框架。第1章概述搜索和推荐中的语义匹配问题,以及近年来的研究进展。第2章介绍传统匹配模型,包括潜在空间模型。第3章介绍深度学习技术在构建匹配模型时的应用。第4章和第5章分别介绍用于搜索和推荐的深度匹配模型,并将当前的深度学习解决方案分为两类:表示学习方法和匹配函数学习方法。第6章对全书内容做了总结,并为读者指明进一步学习的方向。 本书适合对深度学习感兴趣的各类读者,包括相关专业的本科生、研究生、博士生,以及从事信息检索、搜索引擎、推荐系统、计算广告相关工作的软件工程师。 -
深度学习与计算机视觉李晖晖,刘航本教材主要内容包括计算机视觉历史回顾与介绍、数据驱动的图像分类方式:K最近邻与线性分类器、线性分类器损失函数与很优化、反向传播与神经网络、神经网络的训练、卷积神经网络、迁移学习之物体定位与检测、卷积神经网络的可视化与进一步理解、卷积神经网络工程实践技巧、深度学习开源库使用介绍、图像分割与注意力模型、视频检测与无监督学习等。本书适合高等学校图像处理、模式识别、机器视觉、人工智能相关专业本科高年级学生和研究生使用,也可作为相关专业领域科研工作者参考书。 -
深入机器学习邓子云本书将带领读者一起主动拥抱机器学习,快乐翻越高等数学、算法分析、工程实践这三座大山。根据会用即可者、想深入学习者、想成为专家者这三类读者的学习动机和阅读需求,全书一共用19章来讲解机器学习的各种模型,主要包括机器学习中基础和关键的线性回归、逻辑回归、决策树、贝叶斯、支持向量机、KNN等。全书具有语言表达轻快、模型讲解细致、图表配备众多三点特色。 本书可供计算机、人工智能、大数据等专业的大学生、研究生阅读,也可供需要用到机器学习技术的广大工程技术人员、研究人员作为参考。 -
人工智能伦理与治理未来论坛 著当前,有很多关于人工智能(AI),并和人类生产、生活关系紧密的议题被广泛讨论,包括“如何避免大数据时代个人隐私形同虚设”“代码是否具有道德”等。这些现实议题背后,是两个根本问题:何为“AI伦理”?何为“AI治理”? 本书汇聚众多专家的观点,对这两个根本问题进行了深入探讨,涉及人工智能、计算机、法律、社会学等多个领域,覆盖社会和个人、生产和生活的诸多方面。 本书是根据未来论坛“AI伦理与治理”系列研讨会的成果总结、整理而来,分为AI向善的理论与实践、AI的公平性、AI与风险治理、AI决策的可靠性和可解释性、用户数据隐私、包容性的AI这6个专题方向。每个专题方向均汇集了各领域中一线专家经充分思辨讨论后形成的观点。 本书适合人工智能领域学者、工程师、管理者、创业人员和相关专业学生,法律、社会学等领域的专业人士,以及政府相关部门人员阅读。 -
语言智能研究周建设语言智能正在快速发展。周建设教授主编的《语言智能研究(第1卷)》,不仅用大量材料报告了这一领域快速发展的现况,还尽量呈现相关方面的发展趋势。细读此书,可明现状,可测未来。“消极性”读者,只是被动地获取书中知识,而“积极性”读者,通过阅读能够创造新知,比如对语言智能有更深入理解,比如在本专业、本岗位积极利用语言智能成果,甚至是帮助人工智能的发展。 -
金融智能郑小林,朱梦莹,陈超超本书是新一代人工智能系列教材之一。金融科技经历了金融电子化阶段、互联网金融阶段,进入了金融智能阶段。本书从金融智能的理论、应用和监管三个视角出发,围绕金融智能的理论,结合金融智能应用场景,介绍了人工智能、大数据等新兴技术所引起的金融业的解构与重构。本书共分5篇14章,主要内容包括金融智能概论、金融大数据概览、金融大数据管理、金融智能建模基础、推荐系统、知识图谱、金融智能客服、金融智能风控、金融智能营销、智能投顾、传统金融的智能化、合规科技、监管科技以及实验要求和实验指南。本书内容丰富、系统全面、实践性强,为读者学习金融智能提供了广泛的视角。 本书可作为高等学校人工智能、金融科技等专业高年级本科生和研究生相关课程教材,也可作为金融从业人员学习金融智能知识的参考读物。 -
认知规律启发的显著性物体检测方法与评测范登平《认知规律启发的显著性物体检测方法与评测》的作者范登平博士在苏黎世联邦理工学院全职从事研究工作。本书的研究内容紧密结合了人类视觉认知机制和显著性计算技术,所提出的核心技术为计算机视觉的诸多任务提供了重要的技术基础。由范博士设计的两项指标已经成为SOD领域评测模型的黄金标准,为该领域的学术共同体提供了更加全面、客观的结果。《认知规律启发的显著性物体检测方法与评测》共七章:第1章 绪论,介绍本书的研究背景并简述研究目标和主要贡献。第2章 相关工作,介绍相关工作,包括图像显著性物体检测、视频显著性物体检测、非二进制显著性物体检测评价指标和二进制显著性物体检测评价指标。第3章 富上下文环境下的显著性物体检测数据集与评测,详细介绍富上下文环境下的显著性物体检测数据集与评测,包括显著性物体检测数据集的构建和基于属性的评测。第4章 基于注意力转移机制的视频显著性物体检测,详细介绍本书提出的基于注意力转移机制的视频显著性物体检测技术、新的视频显著物体检测数据集以及模型的评测。第5章 基于结构相似性的显著性检测评价指标,详细讨论本书提出的基于结构相似性的显著性检测评价指标,并利用该评价指标对多种基于深度学习的模型进行评测。第6章 基于局部和全局匹配的显著性物体检测评价指标,讨论了本书提出的基于局部和全局匹配的显著性物体检测评价指标,该指标主要针对物体分割之后的二值显著图的评价,通过一系列元度量实验,证明了该指标*符合人眼的感知。第7章 总结与展望,总结全书并讨论未来的研究方向。 -
自然语言结构计算荀恩东暂缺简介...
