人工智能
-
图解人工智能[日] 多田智史 著,张弥 译近年,人工智能热潮席卷而来。本书以图解的方式网罗了人工智能开发必备的基础知识,内容涉及机器学习、深度学习、强化学习、图像和语音的模式识别、自然语言处理、分布式计算等热门技术。全书以图配文,深入浅出,是一本兼顾理论和技术的人工智能入门教材。旨在帮助读者建立对人工智能技术的整体印象,为今后深入探索该领域打下基础。另外,书中设有专栏和“小贴士”,介绍了相关术语的背景知识,可帮助读者扩充知识面,进一步理解相关技术。
-
机器学习观止林学森 著《机器学习观止——核心原理与实践》在写作伊始,就把读者设想为一位虽然没有任何AI基础,但对技术本身抱有浓厚兴趣、喜欢“抽丝剥 茧”、探究真相的“有识之士”。有别于市面上部分AI技术书籍从一开始就直接讲解各种“高深莫测”算法的叙 述手法,《机器学习观止——核心原理与实践》尝试先从零开始构建基础技术点,而后“循序渐进”地引领读者前进,最终“直捣黄龙”,赢取最 后的胜利。 全书据此分为5篇,共31章,内容基本覆盖了由AI发展历史、数学基础知识、机器学习算法等经典知识点以及 深度学习、深度强化学习等较新理论知识所组成的AI核心技术。同时注重“理论联系实践”,通过多个章节重点 介绍了如何在工程项目中运用AI来解决问题的诸多经验以及相应的模型算法,以期让读者既能享受到“知其所以 然”的乐趣,还能体会到“知其然”的轻松和愉悦。 《机器学习观止——核心原理与实践》适合对AI感兴趣的读者阅读,从事AI领域工作的研究人员、工程开发人员、高校本科生和研究生都可以从 《机器学习观止——核心原理与实践》中学到机器学习的相关知识。
-
人工智能基础与应用韩雁泽,刘洪涛 著暂缺简介...
-
信息物理系统强化学习李崇(Chong Li),邱美康(Meikang Qiu) 著,卢苗苗 计湘婷 何源 席瑞 金梦 译本书研究的灵感来自于近期的强化学习(RL)和信息物理系统(CPS)领域的发展。RL植根于行为心理学,是机器学习的主要分支之一。不同于其他机器学习算法(如监督学习和非监督学习),RL的关键特征是其独特的学习范式,即试错。与深度神经网络相结合,深度RL变得如此强大,以至于许多复杂的系统可以被人工智能智能体在超人的水平上自动管理。另一方面,CPS被设想在不久的将来给我们的社会带来革命性的变化。这些例子包括新兴的智能建筑、智能交通和电网。
-
大脑的意识,机器的意识渡边正峰 著,岸本鹏子,安婷婷,胡实 译本书是一本关于人类智能和人工智能的科普读物。人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。本书通过“意识的奇妙”“追逐大脑中意识的踪影”“意识的实验性研究——操作实验”“如何看待意识的自然法则”“意识是信息,还是算法”“大脑的意识和机器的意识”等章节,介绍了意识产生的机理、外界因素对意识形成的影响、对意识的自然法则的诠释以及机器是否能实现对意识的模拟等内容。
-
人工智能基础凯文·沃里克 著,王希 译这是一本非常好看的人工智能领域的入门读物,神经网络、机器人等当下的热门研究课题都有涉及。具体来看,全书共分为六个模块,涵盖了人工智能研究的各个方面,介绍了经典人工智能和现代人工智能,内容涉及智能是如何定义的、机器是如何思考的、机器系统中的感知输入、意识的原理等,包括了人工智能背后的哲学、技术和基础方法等。虽然也给出了人工智能编程的基本框架,但并没有涉及复杂的程序编写细节。因此这本小书可以说是对人工智能的全面概览——它对每个特定的主题不会讲得过深,同时也给出了延伸阅读的资料,方便感兴趣的读者进一步阅读。
-
Keras实战王晓华 著Keras是一个用Python编写的开源人工神经网络库,可以作为TensorFlow、CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。本书从初学者的角度出发,为读者构建一个完整的Keras技术体系。 本书共分为9章,主要内容包括深度学习框架Keras的背景、搭建学习环境、深度学习的理论基础、卷积层与MNIST实战、多层感知机与MNIST实战、TensorFlow Datasets和TensorBoard、ResNet及其兄弟ResNext,最后是两个项目实战案例——词嵌入与情感分类。 本书既适合Keras深度学习初学者、深度学习算法技术人员阅读,也适合作为高等院校与培训机构人工智能相关专业的师生参考。
-
数据科学与商业分析[美] 马特·塔迪(Matt Taddy) 著,陈光欣 译大数据和机器学习等的兴起使得商业分析领域越来越倚重数据科学。本书详细介绍了商业数据科学中的关键元素,汇集了机器学习、经济学以及统计学领域的核心原则和最佳实践,内容涵盖识别商业政策中的重要变量、通过实验测量这些变量,以及挖掘社交媒体以了解公众对于政策修改的反应,为从事商业数据科学的数据科学家和商业人士提供了必备工具。书中通过大量数据分析示例讲解如何利用R语言编写脚本来解决复杂的数据科学问题。
-
人工智能算法 卷3 深度学习和神经网络[美] 杰弗瑞·希顿(Jeffery Heaton) 著,王海鹏 译自早期以来,神经网络就一直是人工智能的支柱。现在,令人兴奋的新技术(例如深度学习和卷积)正在将神经网络带入一个全新的方向。在本书中,我们将演示各种现实世界任务中的神经网络,例如图像识别和数据科学。我们研究了当前的神经网络技术,包括ReLU 激活、随机梯度下降、交叉熵、正则化、Dropout 及可视化等。
-
可解释机器学习[德] Christoph Molnar 著,朱明超 译机器学习虽然对改进产品性能和推进研究有很大的潜力,但无法对它们的预测做出解释,这是当前面临的一大障碍。《可解释机器学习:黑盒模型可解释性理解指南》书是一本关于使机器学习模型及其决策具有可解释性的书。本书探索了可解释性的概念,介绍了简单的、可解释的模型,例如决策树、决策规则和线性回归,重点介绍了解释黑盒模型的、与模型无关的方法,如特征重要性和累积局部效应,以及用Shapley值和LIME解释单个实例预测。本书对所有的解释方法进行了深入说明和批判性讨论,例如它们如何在黑盒下工作、它们的优缺点是什么、如何解释它们的输出。本书将解答如何选择并正确应用解释方法。本书的重点是介绍表格式数据的机器学习模型,较少涉及计算机视觉和自然语言处理任务。《可解释机器学习:黑盒模型可解释性理解指南》适合机器学习从业者、数据科学家、统计学家和所有对使机器学习模型具有可解释性感兴趣的人阅读。