人工智能
-
无人机编程实战[墨] 胡里奥阿尔贝托门多萨-门多萨 等著,徐坚 张利明 吴文峰 李佳蓓 译本书包括三个部分,首先介绍自动驾驶仪和库的特性。然后着重介绍对ArduPilot库的重要部分的理解,其中描述了代码的每个主要组成部分。第三部分是高级特性部分,目的是将获得的知识扩展到实时应用程序。每个部分都详细描述了代码及其组件、应用程序和交互。
-
从零构建知识图谱邵浩,张凯,李方圆,张云柯,戴锡强 著这是一本能让读者快速从零开始构建工业级知识图谱的著作。作者是知识图谱和自然语言处理领域的专家,本书得到了OpenKG联合创始人王昊奋、清华大学教授李涓子、东南大学教授漆桂林、美团知识图谱团队负责人张富峥、文因互联创始人鲍捷等学界和业界知识图谱扛旗人的一致好评和推荐。 本书不仅详细讲解了知识图谱的技术原理和构建工具,而且还循序渐进地讲解了知识图谱的构建方法、步骤和行业应用。配有大量实战案例,并且开放了源代码,确保读者能学会并落地。 全书一共8章: 第1章介绍了知识图谱的概念、模式、应用场景和技术架构; 第2章围绕知识图谱的技术体系,详细阐述了知识的表示与建模、抽取与挖掘、存储与融合,以及检索与推理; 第3章通过具体的实例介绍了各种知识图谱工具的使用; 第4章和第5章从工业实践的角度讲解了从0到1构建通用知识图谱和领域知识图谱的步骤和方法,并配备详细的代码解读; 第6~7章讲解了知识图谱的具体应用和一个综合性的知识图谱案例——问答系统,进一步指导读者实践; 第8章对知识图谱的未来发展进行了总结和展望。
-
人工智能数学基础陈华 著本书是面向高级人工智能人才培养的高等学校人工智能相关专业规划教材中的一本,通过梳理人工智能涉及的相关数学理论,并通过Python实现相关案例,使抽象的理论具体化,从而加深读者对数学的感性认识,提高读者对数学理论的理解能力。本书首先介绍了人工智能所需的基础数学理论,然后根据数学内容的逻辑顺序,以微积分、线性代数、概率论、数理统计为基础,对函数逼近、最优化理论、信息论、图论进行了深入介绍,同时给出了它们在人工智能算法中的实验案例。另外,该书将免费提供配套 PPT、实验及应用案例等基本教学材料。
-
演化机器学习徐华 著,徐华 编近年来,演化计算作为计算智能中传统的优化技术,已经广泛应用于求解各种数据挖掘问题,形成了一种基于遗传的机器学习新范式学习分类器。一方面,在真实场景中采集的原始数据不可避免地包含着冗余乃至噪声属性的信息,这些不相关的特征将对学习分类器算法的学习性能与计算效率造成负面影响。另一方面,学习分类器以显式规则表示目标概念,在监督学习或强化学习机制的基础上,利用演化算法对规则空间进行搜索,从而完成学习任务。规则空间的有效搜索是影响学习分类器性能的关键。针对上述问题,本书的主要探讨内容:一是学习分类器与特征选择方法,重点是做两者的整合研究,将学习分类器的分类模型构建过程与特征选择的特征子集搜索过程统一集成在基于遗传的机器学习框架下,同时改善分类算法的预测性能与运行效率;二是从提高规则空间的搜索质量出发,着眼于分类问题,介绍了基于分布估计算法的学习分类器。本书可作为大数据及人工智能等相关专业的教材与参考用书。
-
机器人[英] 安德里亚·米尔斯 著,覃芳芳,丁颖 译无人机算机器人吗?世界上很贵的机器人值多少钱?机器人可以帮助人类做哪些事?机器人可以有公民身份吗?未来会有哪些机器人出现?你手上的这本书,将为你解答这些有趣的问题。色彩亮丽的手绘插图,栩栩如生的各种角色,将以轻松活泼的聊天语言,给你唠叨它们的故事,带你踏上认识大千世界的奇妙之旅,轻松学习百科知识。
-
人工智能产品经理技能图谱张俊林,王斌 著《人工智能产品经理技能图谱》首先对人工智能产品经理做了分类,并对每类人工智能产品经理的工作流程进行了介绍,然后从相关技术、数学、算法、软件设计、硬件设计等方面对人工智能产品经理需掌握和了解的相关知识做了详细介绍。本书以丰富的实际案例贯穿始终,对各类人工智能产品设计方法论和人工智能技术指标进行了详细说明,方便读者快速掌握人工智能的发展现状及相关产品的设计方法。《人工智能产品经理技能图谱》适合希望或刚刚走上人工智能产品经理岗位的读者阅读,也适合人工智能相关专业的高年级本科生或研究生以及教师参考。
-
构建企业级推荐系统刘强 著本书从不同角度来介绍企业级推荐系统构建的理论、方法、策略。首先让读者对推荐系统有一个基础的认知,然后针对将要用到的算法知识进行了详细讲解,接着从用户维度、标的物维度、算法维度、平台方维度等角度介绍了评估方法,再进行了工程实现,通过案例对工程实现的核心模块、架构设计、技术选型进行分解。紧接其后从运营角度讲解了推荐产品的应用场景及设计推荐产品的基本原则,并进行了实践,通过实践案例分析,进一步强化前面介绍的各个知识点,让读者有一个系统认识。
-
智能文娱刘婷婷 著本书将理论介绍与经典案例相结合,对文娱行业的现状、人工智能在文娱行业的应用和智能文娱的未来发展进行全面、深入、系统的解读与预测。本书选取的案例都极具代表性,涵盖文娱行业的诸多领域,如影视、游戏、文学等,涉及众多科技巨头,如阿里巴巴、百度、腾讯、今日头条等。笔者在介绍案例时,并非只是简单描述,而是通过深入分析来抛砖引玉,向读者揭示文娱行业的发展方向,帮助文娱行业的从业者学习、了解人工智能带来的改变。
-
机器学习中的加速一阶优化算法林宙辰,李欢,方聪 著机器学习是关于从数据中建立预测或描述模型,以提升机器解决问题能力的学科。在建立模型后,需要采用适当的优化算法来求解模型的参数,因此优化算法是机器学习的重要组成部分。但是传统的优化算法并不完全适用于机器学习,因为通常来说机器学习模型的参数维度很高或涉及的样本数巨大,这使得一阶优化算法在机器学习中占据主流地位。 本书概述了机器学习中加速一阶优化算法的新进展。书中全面介绍了各种情形下的加速一阶优化算法,包括确定性和随机性的算法、同步和异步的算法,以求解带约束的问题和无约束的问题、凸问题和非凸问题,对算法思想进行了深入的解读,并对其收敛速度提供了详细的证明。 本书面向机器学习和优化领域的研究人员,包括人工智能、信号处理及应用数学特别是计算数学专业高年级本科生、研究生,以及从事人工智能、信号处理领域产品研发的工程师。
-
基于BERT模型的自然语言处理实战李金洪 著本书介绍如何在PyTorch框架中使用BERT模型完成自然语言处理(NLP)任务。 BERT模型是当今处理自然语言任务效果最好的模型。掌握了该模型,就相当于掌握了当今主流的NLP技术。本书共3篇。 -第1篇介绍了神经网络的基础知识、NLP的基础知识,以及编程环境的搭建; -第2篇介绍了PyTorch编程基础,以及BERT模型的原理、应用和可解释性; -第3篇是BERT模型实战,帮助读者开阔思路、增长见识,使读者能够真正驾驭BERT模型,活学活用,完成自然语言处理任务。通过本书,读者可以熟练地在PyTorch框架中开发并训练神经网络模型,快速地使用BERT模型完成各种主流的自然语言处理任务,独立地设计并训练出针对特定需求的BERT模型,轻松地将BERT模型封装成Web服务部署到云端。本书结构清晰、案例丰富、通俗易懂、实用性强,适合对自然语言处理、BERT模型感兴趣的读者作为自学教程。另外,本书也适合社会培训学校作为培训教材,还适合计算机相关专业作为教学参考书。