数据库
-
网络数据库设计与管理项目化教程李明仑,张洪明暂缺简介... -
量化学习刘三女牙,杨宗凯暂缺简介... -
MySQL数据库管理与开发实践教程程朝斌本书讲述MySQL数据库的开发技术。全书共分为16章,内容包括MySQL发展历史,与其他数据库的区别,MySQL常用的一些工具,MySQL文件结构、系统架构、存储引擎、数据类型,数据库和表的创建、管理和删除,数据完整性约束,包括主键约束、外键约束、非空约束、默认值约束、唯一约束和自增约束等,数据的单表查询和多表查询,视图和索引,变量、常量、运算符和表达式、运算符的优先级、流程控制语句、自定义函数,系统函数,存储过程和触发器,事务管理,性能优化,日志文件管理、权限管理以及数据的备份和还原。最后一章通过一个综合案例实现网上购物系统的数据库。 本书可作为在校大学生学习使用MySQL的教学资料,也可以作为非计算机专业学生学习MySQL的参考书。 -
如虎添翼!数据处理的SPSS和SAS EG实现经管之家《如虎添翼!数据处理的SPSS和SAS EG实现(第2版)》作为SAS EG 和SPSS 数据处理比较的首本实战中文教材,本书并非单纯地逐个讲解菜单的操作,而是将数据分析的基本思路、流程融入到软件的操作之中。每章通过设置商业背景,配以SAS EG 和SPSS 的实战演练,讲解形式更贴近读者的实际工作,使读者真正理解数据分析、数据处理的精髓。本书除讲解软件操作,还同时介绍了对应菜单操作的SAS 程序语言实现过程,读者可以根据自己的需要逐步学习,进而走进用SAS 程序处理数据的大门。《如虎添翼!数据处理的SPSS和SAS EG实现(第2版)》适合那些想了解数据预处理,或者被数据的预处理占去大部分时间而想提高效率,或者囿于菜单操作的局限性而希望通过程序实现的数据分析人员。 -
从零进阶!数据分析的统计基础经管之家《从零进阶!数据分析的统计基础(第2 版)》共7 章,分别讲解了数据分析的步骤和方法、描述性统计分析、数理统计基础、抽样估计、假设检验、方差分析、相关与回归分析。本书使用简单的语言介绍了这些数据分析基本方法的核心思想和涉及的统计学、概率论等方面的理论内容,并使用图示的方法详细介绍了使用Excel 2013 进行简单的描述性统计分析和使用SPSS 进行相关的数据分析的过程与结果分析。《从零进阶!数据分析的统计基础(第2 版)》适合需要提升自身数据分析理论和实践能力的职场新人;在市场营销、金融、财务、人力资源管理中需要数据分析的人士,从事咨询、研究、分析等的专业人士。也可以作为数据分析师职业培训的教材,普通高等院校非统计专业数据分析的选修教材。 -
胸有成竹!数据分析的SPSS和SAS EG进阶经管之家《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》共5 章,涉及使用SPSS Statistics 和SAS EG 做商业数据分析的主要分析方法。其中,第1章的主要内容为数据分析方法概述;第2 章至第4 章的主要内容为横截面数据分析方法;第5 章的主要内容为时间序列分析方法。每章都根据所涉及的知识点的不同,选取了实用的案例,并为读者准备了相应的思考和练习题。《胸有成竹!数据分析的SPSS和SAS EG进阶(第2版)》是一本面向商业数据分析初学者的教材,从具体的商业数据分析案例入手,使读者掌握数据分析的目的、理念、思路与分析步骤。本书力图淡化技术,对于方法的介绍也尽量避免涉及过多的数学内容,和高等数学相关的内容只在线形回归和主成分分析这两节中涉及到,而且都辅以图形作形象的展现。因此本书的读者只需要具有高中水平的数学基础即可。 -
数据架构师的PostgreSQL修炼(美)杰亚德万·梅马拉(Jayadevan Maymala)本书将教你如何构建及运行一个可扩展且已经优化的PostgreSQL服务器。全书始于基本概念(例如从源代码中安装PostgreSQL),并逐渐深入理论部分(例如并发性和事务管理)。在此之后,你将学习如何设置副本、使用负载均衡进行水平扩展以及排除故障。继续阅读本书,你将看到配置参数对性能、可扩展性以及事务管理所起到的显著影响。最后,你将接触到PostgreSQL生态系统中那些有用的工具,它们被用来分析PostgreSQL日志、设置负载均衡和进行数据恢复。 -
Spark最佳实践陈欢 林世飞本书是Spark实战指南,全书共分8章。前4章介绍Spark的部署、工作机制和内核,后4章分别通过实战项目介绍Spark SQL、Spark Streaming、Spark GraphX和Spark MLib功能模块。此外,本书详细介绍了常见的实战问题,比如大数据环境下的配置设置、程序调优等。本书附带的一键安装脚本,更能为初学者提供很大帮助。 -
Access 2007数据库应用技术暂缺作者暂缺简介... -
大数据:互联网大规模数据挖掘与分布式处理 + 数据挖掘导论(美)Pang-Ning Tan,(美)Michael Steinbach 等这套书以大数据环境下的数据挖掘和机器学习为重点,全面介绍了实践中行之有效的数据挖掘知识和数据处理算法。《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法,目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。《大数据:互联网大规模数据挖掘与分布式处理(第2版)》 源自斯坦福大学“海量数据挖掘”(CS246: Mining Massive Datasets)课程,主要关注极大规模数据的挖掘。主要内容包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统。两本书都提供了大量示例、图表和习题。
