数据库
-
产业数字化国家工业信息安全发展研究中心 清华大学数据治理研究中心洞见产业新生态,解码数字新经济行业场景真实展示 实际案例深度梳理,感受数字转型路径风格谭建荣院士、郭华东院士、邬贺铨院士、张宏科院士 共同推荐《产业数字化——释义、场景及应用案例》以《“十四五”数字经济发展规划》中产业数字化部分的核心内容为纲领,从入选工业和信息化部的大数据产业发展示范项目中,选取了具有产业代表性的来自生产一线的数字化转型实践案例,连同数字化建设和转型的共性基础内容,组织了42 个案例,从实践背景、方法手段、主要应用的技术、实践过程中遇到的典型问题、实施流程、典型应用场景等方面,分享了多个行业、多家单位的实践经验,以期帮助读者对产业数字化转型产生更为具体的了解和体会、获得间接经验,为读者提升数字认知和工作能力做一定的基础铺垫。本书适合具有产业数字化转型需求的相关企业的管理者、运维人员阅读参考,也适合相关院校作为大数据、数据运维相关专业的产教融合教材使用。 -
DBA实战手记薛晓刚 等本书是一本指导DBA进行数据库开发和运维的实用手册,本书共9章,包括漫谈数据库、如何提升数据库性能、如何运维好数据库、如何进行数据库设计、如何做好数据库之间的数据同步、认识HTAP技术、认识数据库的功能原理、认识数据库中的数学(逻辑与算法),以及DBA的日常:数据库管理及开发的最佳实践。另有附录DBA杂谈。本书内容是资深DBA多年实践经验的归纳总结,涵盖DBA日常工作中的主要方面,通过剖析众多的真实案例,并解读原理、分享技巧、提供思路,内容具备较强的启发性和指导性。本书的受众包括但不限于想要了解如何提升数据库性能的应用开发人员、DBA、业务架构师、IT架构师、数据架构师、数据分析师、系统架构师、解决方案架构师和企业高级管理人员。 -
MySQL 数据库应用技术方玲玲书通过通俗易懂的文字、翔实的案例,系统地介绍MySQL 8.0数据库应用技术。全书共11章,可以归纳为4个部分。第1部分(第1、2章)介绍数据库技术和MySQL基础,第2部分(第3~6章)介绍以SQL为核心的数据库应用,第3部分(第7~10章)介绍MySQL编程、数据安全、事务及并发控制等内容,第4部分(第11章)介绍应用Python与MySQL数据库技术实现信息系统的方法与技巧,从而培养读者对数据库的应用能力。 为了帮助读者快速掌握知识要点、验证学习效果,编者精心为本书设计知识结构思维导图,并提供示例源码和核心知识点的微课视频。 本书可作为高等院校信息技术及相关专业数据库应用课程教材,也可作为参加全国计算机等级考试二级 MySQL数据库程序设计的参考书。 -
数据分析实践姜文哲《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。 -
EViews在数据分析中的应用何晓琦《EViews在数据分析中的应用》结合大量实战案例,全面、系统地介绍EViews软件的基本用法及其在数据分析中的应用。本书每章的最后都提供上机练习题,帮助读者提高动手能力。另外,本书提供配套教学视频,帮助读者高效、直观地学习,还提供教学PPT和大纲,方便相关高校的老师教学。《EViews在数据分析中的应用》共13章,分为4篇。第1篇“EViews数据分析基础”,涵盖EViews概述、EViews基本数据分析(单序列)、EViews基本数据分析(序列组)和EViews数据图形化分析;第2篇“EViews经典线性回归模型”,涵盖经典回归模型和违背经典线性回归模型假设的修正;第3篇“EViews时间序列模型”,涵盖时间序列模型与预测、带季节效应的时间序列模型、条件异方差模型、向量自回归模型和协整相关模型;第4篇“EViews的其他模型”,涵盖离散和受限因变量模型,以及混合数据与面板数据分析。《EViews在数据分析中的应用》内容丰富,结构合理,逻辑清晰,步骤详细,特别适合证券、银行、保险和投资等经济与金融行业中从事数据分析的相关人员阅读,也适合政府和工业制造等领域从事宏观经济分析与预测的数据分析人员阅读,还适合作为高等院校“EViews应用”“计量经济学”和“时间序列分析”等课程的教材。 -
一本书讲透数据资产入表王琰 孟庆国 刘晗 朱越 等内容简介这是一部能指引零基础读者顺利完成数据资产入表的实操性著作。它不仅为读者提供了数据资产入表所需的全部知识,还给出了实际操作层面的方法指引;既是数据资产入表的初学者指南,也是企业实施数据资产入表操作的工作手册。本书由数据资产管理领域的标杆企业亿信华辰倾情奉献,同时融合了行业的先进实践经验,开创性提出“数据资产三次入表理论”(数据原始资源入表、数据产品入表、数据金融资产入表),得到了来自学术界和企业界的12位数据资产管理专家的高度评价和强烈推荐。本书分为四部分,不仅从战略、方法、工具、实操、案例等角度为读者提供了全面的数据资产入表知识体系,还前瞻性地探讨了数据资产入表后的价值挖掘、资产评估和金融创新。第一部分 数据资产入表全景概览(第1和第2章)深入分析数据资产入表的宏观背景、核心目标及其对企业乃至社会的价值,为读者描绘数据资产入表的时代意义和发展蓝图。第二部分 数据资产入表核心知识体系(第3~5章)详解数据资产入表所需的会计原理、法律框架和大数据技术基础,建立全面而深入的知识体系,为实操打下坚实基础。第三部分 数据资产入表实操指南(第6~9章)系统阐述实施策略与具体步骤,涵盖数据原始资源入表与数据产品入表的关键环节,提供详尽的实操指南。第四部分 数据资产入表后的价值挖掘(第10~13章)指导企业探索金融创新工具的应用,实现数据的资产化和资本化,释放数据资源的巨大潜在价值。此外,附录包含“数据资产入表36问”“数据要素相关标准清单”等内容,插页给出了“数据资产入表知识地图”。 -
Redis 高手心法李健青本书共5章。其中,第1章从一条命令的执行开始,勾勒出Redis的数据存储原理和整体架构;第2章介绍了所有数据类型的实现原理和应用实战;第3章介绍了RDB快照、AOF、主从复制架构、哨兵集群和Redis Cluster的原理及使用方法;第4章介绍了Redis事务、内存管理、事件驱动、发布/订阅机制、客户端缓存和I/O多线程模型;第5章介绍了性能排查与解决问题的检查清单、使用规范、内存优化技巧、生产王者配置、缓存使用策略和分布式锁演进原理。本书适合后端开发工程师、运维人员、系统架构师及刚入行的程序员阅读,用以掌握 Redis 内部原理并提升实战技巧。 -
大数据工程师面试笔试宝典杨俊 姜伟 许朋举《大数据工程师面试笔试宝典》全面讲解了大数据的核心技术及如何解答大数据工程师面试笔试中的常见问题,还引入了相关知识点辅以说明,让读者对所学知识进行查漏补缺,帮助读者顺利通过大数据工程师面试笔试。《大数据工程师面试笔试宝典》的题目均来自一线互联网公司面试笔试真题,涵盖大数据基础、大数据生态圈技术组件以及大数据不同岗位的面试笔试题。第1~2章主要介绍了职业道路如何选择、面试笔试前如何准备、面试笔试过程中如何应对,以及面试经常遇到的“坑”。第3章介绍了大数据基础面试笔试题,让读者学会利用大数据思维解决常见应用场景;第4~10章重点介绍了大数据生态圈核心技术的面试笔试题,让读者加强对大数据技术组件的理解;第11~13章介绍了大数据仓库、大数据项目、大数据运维方向的常见面试笔试题;第14章探讨了大数据与人工智能的交叉点,让读者可以轻松应对大数据工程师的面试笔试。《大数据工程师面试笔试宝典》内容的深度和广度贴近实际,将帮助大数据领域的求职者为面试笔试做好充分的准备,提高面试成功率,同时,《大数据工程师面试笔试宝典》也可作为从业者的实用工具书,以加深对大数据技术和实践的理解。无论是初学者还是有经验的专业人士,都将从本书提供的详实信息和实用建议中受益。 -
大数据导论赵春晖、宋鹏宇、陈旭 编著在数字化浪潮中,大数据技术无处不在,包括互联网、体育、工业、医疗、交通等在内的社会各行各业,都融入了大数据的印迹,大数据对人类的社会生产和生活产生了重大而深远的影响。一早醒来,多篇你感兴趣的推送文章早已占领手机屏幕;走在路上,智能手环实时监测着你的健康信息;想点外卖,小程序优先推荐最符合你口味的商家;骑车出行,导航系统会提供实时路况和最优路线避开拥堵;晚上回家,收到工厂根据你的身材比例剪裁制作的个性化服装。这些现象的背后,其实都和大数据息息相关。大数据技术正在不断与人类生产生活进行交汇与融合,并潜移默化地改变着世界的运作模式。本教材将从大数据的基本概念讲起,追溯大数据发展历程,并围绕大家身边的大数据应用,包含大数据在互联网、体育、工业、医疗、交通等方面的应用,以及大数据共享、开放、隐私、安全等相关问题,带大家领略大数据改变世界的方方面面。本书作为面向高校学生开设的通识课程的配套教材,服务于高校培养具有数据素养的综合性人才,适用于各个专业的学生,同时本书亦可以作为大数据科普读物。大数据包罗万象,很难通过一本教材将大数据概念、大数据影响以及大数据的应用讲清楚、讲完整。希望本教材能够抛砖引玉,拓宽大家的视野和知识面,培养大家的数据思维、数据意识和对大数据的兴趣,帮助更多人在大数据时代找到自己的方向和定位。 -
时序大数据平台TDengine核心原理与实战TDengine团队本书由浅入深地阐述了时序大数据平台TDengine的核心原理与实战案例。首先,本书为读者提供了时序数据的基础知识和TDengine的核心特性概览,包括数据模型、数据写入、数据查询、数据订阅和流计算等;其次,详细介绍了TDengine的日常运维管理,包括安装部署、资源规划、图形化管理、数据安全等关键内容;然后,深入讲解了如何利用TDengine进行应用开发,涵盖多种编程语言的连接器使用、订阅数据,以及自定义函数的开发等高级功能;接下来,为数据库研发爱好者揭秘TDengine的内核设计,从分布式架构到存储引擎、查询引擎、数据订阅,再到流计算引擎的详细阐述;最后,通过分析典型应用场景案例,展示TDengine如何在实际业务中发挥作用。本书架构清晰,内容丰富,理论与实践相结合,适合作为需要使用TDengine进行大数据处理的开发者、架构师和产品经理的技术参考与培训资料。
