计算机科学理论与基础知识
-
时变时滞工业过程鲁棒预测控制李平鲁棒预测控制是在预测控制的基础上考虑到实际系统存在着模型不精确或者参数时变、未知扰动等各种不确定性而发展起来的先进控制技术。如何在鲁棒预测控制的基础上有效处理时变时滞对系统的影响成为工业过程控制亟待解决的问题。本书针对具有时变时滞的工业过程可能存在参数时变、强干扰、执行器故障、非线性、多阶段切换、时变跟踪轨迹等问题,重点介绍了基于鲁棒预测控制思想以解决这些问题的先进技术和方法。其主要内容为作者和所在团队的项目经验及科研成果,包括线性控制、容错控制、非线性控制和切换控制等相关内容。 -
因果推断与机器学习郭若城 等本书是一本理论扎实,同时联系实际应用的图书。全书系统地介绍了因果推断的基本知识、基于机器学习的因果推断方法和基于因果推断的机器学习方法及其在一些重要领域的应用。全书共分6章。第1章从结构因果模型和潜在结果框架出发,介绍因果推断的基本概念和方法。第2章介绍近年统计和机器学习文献中出现的一些重要的基于机器学习的因果推断方法。第3章介绍能够提高机器学习模型的泛化能力的因果表征学习。第4章介绍因果机器学习如何提高机器学习模型的可解释性与公平性。第5章介绍因果机器学习在推荐系统和学习排序中的应用。第6章是对全书的一个总结和对未来的展望。 本书对结合因果推断和机器学习的理论与实践进行了介绍。并在第1版的基础上对一些陈旧的内容做了更新。通过阅读本书,读者不仅可以掌握因果机器学习的基础理论,还可对本书中提到的论文代码进行钻研,从而在实践中加深对因果机器学习的理解。 -
复杂体系过程的随机网络理论与应用方志耕 等本书以作者团队在随机网络领域的理论创新和应用实践为支撑,全面介绍了复杂体系过程的随机网络模型,主要内容包括随机网络模型要素和结构框架、智能随机网络模型、不确定性随机网络模型,以及卫星通信网络建模和资源管控、复杂体系效能评估、复杂体系可靠性建模、区域产业发展分析等。 -
非线性系统的全局能控性孙轶民本书从理论上论述非线性系统的全局能控性.主要介绍平面仿射非线性系统和几类特殊的高维非线性系统的全局能控性判据,以及几类多项式系统全局能控性的判别算法.另外,本书也对平面仿射非线性系统的全局渐近能控性及全局镇定性做一点讨论. -
数字城乡融合贾雯霞暂缺简介... -
大数据计算方法基础李廉、陈国良 主编,周明洋 等编著本书研究大数据的计算理论基础,重点讲述P类和NP类问题的并行和交互式计算方法。即在大数据的场景下,对于P类问题,为了提高求解速度可以采用并行的方法;对于NP类问题,为了提高解的质量可以采用交互的方法。 全书内容按照大数据的泛构理论(第三章),并行NC类计算、LNC类、以及LL类计算(第四章),IP类计算和NC类函数逼近方法(第五章),同时对于大数据价值问题(第六章)进行讨论,为了便于阅读和学习,提供了预备知识绪论(第一章)和图灵机及复杂类问题介绍(第二章)。 本书框架清晰,内容翔实,对于一些经典问题有详细的证明,可作为高等学校计算机、计算数学以及相关专业的本科高年级学生和研究生的教学用书,亦可供从事高性能并行计算相关工作的科技人员阅读参考。 -
统计至简姜伟生数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所有人生来都握有一副好牌,但是掌握“数学 编程 机器学习”的知识绝对是王牌。这一次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学,在创作时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。《统计至简:概率统计全彩图解 微课 Python编程》是“鸢尾花数学大系—从加减乘除到机器学习”丛书中数学版块—“数学三剑客”的第三册,也是最后一本。“数学”板块的第一本《数学要素》是各种数学工具的“大杂烩”,可谓数学基础;《矩阵力量》专门讲解机器学习中常用的线性代数工具;本册《统计至简》则介绍机器学习和数据分析中常用的概率统计工具。《统计至简:概率统计全彩图解 微课 Python编程》的核心是“多元统计”,离不开第二册《矩阵力量》中介绍的线性代数工具。《统计至简:概率统计全彩图解 微课 Python编程》内容又可以归纳为 7 大板块——统计、概率、高斯、随机、频率派、贝叶斯派、椭圆。《统计至简:概率统计全彩图解 微课 Python编程》在讲解概率统计工具时,会穿插介绍其在数据科学和机器学习领域的应用场景,让大家学以致用。《统计至简:概率统计全彩图解 微课 Python编程》读者群包括所有在工作中应用概率统计的朋友,尤其适用于初级程序员进阶、大学本科数学开窍、高级数据分析师、机器学习开发者。 -
业务数智化高远本书不仅是一本业务数智化体系的科普书,还是作者多年在真实业务场景下进行数智化实践的经验总结。本书系统总结了一套完整的数智化解决方案——3M数智化体系。全书共包括11章,第1~3章主要对数字化和数智化进行介绍;第4~8章围绕3M数智化体系展开,详细说明了业务数智化的适用范围和准备工作、整体构思、思想、落地方法和落地产品;第9~11章介绍了内容行业、O2O行业、生产制造业的数智化实践,以案例形式进行实战演练。 本书适合正在实践数智化项目的领导者,需要了解和实践数字化/数智化转型的基层管理者和各类技术人员、产品人员、运营人员,高校的教师、科研人员和学生,以及其他想培养数据思维、数智思维、商业化思维的读者。 -
深度生成模型(波兰)Jakub M. Tomczak(杰克布M.汤姆扎克)构建通用人工智能的关键就是无监督学习,不需要标签来训练模型,最简单的方法就是使用深度生成模型。本书主要讲述如何将概率建模和深度学习结合起来去构建可以量化周边环境不确定性的强大的 AI 系统。这种AI系统可以从生成的角度来理解周边世界。本书涵盖了深度生成模型的多种类型,包括自回归模型、流模型、隐变量模型、基于能量的模型等。这些模型构成了以 ChatGPT 为代表的大语言模型,以及以 Stable Diffusion 为代表的扩散模型等深度生成模型背后的技术基石。本书适合具备微积分、线性代数、概率论等大学本科水平,并且了解机器学习、Python 及PyTorch 等深度学习框架的学生、工程师和研究人员阅读。无论读者的背景如何,只要对深度生成模型有兴趣,都能从本书中获益。 -
AIGC自动化编程李宁本书为读者提供了一次深入探索人工智能和自动化编程的奇妙之旅。全书从AI(Artificial Intelligence,人工智能)的基本概念和背景入手,逐渐深入到如何使用具有代表性的AIGC工具—ChatGPT、GitHub Copilot和Claude2等进行自动化编程。此外,本书还详细介绍了其他多种AI代码生成解决方案。针对桌面应用、Web应用、游戏、办公自动化等场景,本书还提供了丰富的实例。本书适合对AI和自动化编程感兴趣的初学者阅读,也适合有一定基础并且想要提高开发技能的程序员阅读。同时,本书也可以作为高校或培训机构的参考书。
