书籍详情
低碳废水生物脱氮理论与技术(英文)

作者:陈重军,李大鹏 主编
出版社:中国石化出版社有限公司
出版时间:2025-01-01
ISBN:9787511477491
定价:¥58.00
购买这本书可以去
内容简介
本书是作者根据长期从事低碳废水生物脱氮相关科研和教学的经验编写而成,主要介绍了常见低碳废水生物脱氮工艺的基本原理、影响因素及工艺应用,并着重介绍了亚硝酸盐型厌氧氨氧化工艺的快速启动及影响因素、匹配型亚硝化的调控、颗粒污泥的形成及控制、工艺调控及应用等内容。书中既重视对低碳废水生物脱氮理论的介绍,也注意融合作者在低碳废水强化生物脱氮研究方面的经验和最新研究成果,注重知识的系统性,并力求做到重点突出、内容精练。
作者简介
陈重军,工学博士(博士后),苏州科技大学环境科学与工程学院教授,硕士生导师,主要从事废水低碳处理技术研究和应用,入选江苏省青蓝工程和双创计划。主持国家自然科学基金、中国博士后科学基金、江苏省自然科学基金等20多项;第一或通讯作者在国内外期刊发表论文80余篇,被引超过3200次,高被引论文5篇;申请国家专利28件(授权15件),参编江苏省重点教材2部,获中国产学研合作创新与促进奖二等奖,获全国环境类专业本科生优秀毕业论文指导教师、江苏省协同创新管理先进个人等荣誉。兼任中国环境科学学会水处理与回用专业委员会委员及污染源排放与管控专业委员会委员、中国城镇供水排水协会青年工作者委员会委员、江苏省环境科学学会青年工作委员会委员,《中国环境科学》、《中国给水排水》、《工业水处理》、《生态环境学报》青年编委。主编:陈重军(苏州科技大学),李大鹏(苏州科技大学);副主编:孙法迁(浙江师范大学),毕贞(苏州科技大学),丁静(苏州科技大学)。
目录
Chapter 1 Overview 1
1.1 The nitrogen cycle in nature 1
1.2 Nitrogen contamination risk 2
1.2.1 Global nitrogen pollution situation 3
1.2.2 Nitrogen pollution in China 4
1.3 Nitrogen pollution control 6
1.3.1 Increasingly higher emission
standards 6
1.3.2 Improvement of nitrogen pollution in
natural water bodies in China 7
1.4 Low carbon source wastewater treatment
issue 8
1.4.1 Typical low-carbon source wastewater 8
1.4.2 The challenges of conventional
nitrogen removal 9
1.4.3 The challenge of carbon neutrality 9
1.5 New biological nitrogen removal process 10
1.5.1 Shortcut
nitrification-denitrification systems 10
1.5.2 Simultaneous
nitrification-denitrification systems 11
1.5.3 Anaerobic ammonium oxidation (Anammox) 12
1.5.4 Sulfur-autotrophic denitrification 13
1.5.5 Ferric ammonium oxidation: Feammox 13
1.5.6 Anaerobic oxidation of methane (AOM) 15
1.5.7 Hydrogen autotrophic denitrification 15
Questions 16
References 16
Chapter 2 Partial nitrification and
denitrification 17
2.1 Introduction 17
2.2 Advantages of partial nitrification and
denitrification 18
2.3 Microorganism involved in nitrification 19
2.3.1 Morphologic and phylogenetic
diversity of AOB 19
2.3.2 Morphologic and phylogenetic
diversity of NOB 20
2.4 The main influencing parameters of partial
nitrification 21
2.4.1 pH, free
ammonia (FA) and free nitrous
acid (FNA) 21
2.4.2 Temperature 23
2.4.3 DO concentration 24
2.4.4 Sludge retention time 25
2.4.5 Toxic substances 25
2.5 The main challenges for partial
nitrification 26
2.6 Application of partial nitrification
and denitrification 27
Questions 30
References 30
Chapter 3 Simultaneous nitrification and
denitrification 33
3.1 Introduction 33
3.2 The mechanism and advantages of
simultaneous nitrification and
denitrification 34
3.2.1 The mechanism of SND 34
3.2.2 The advantages of SND 36
3.3 Microorganism involved in SND 37
3.3.1 Nitrifying bacteria within the
biofilm 38
3.3.2 Denitrifying bacteria in the biofilm 38
3.3.3 Bacteria capable of heterotrophic
nitrification and aerobic denitrification 39
3.4 The main factors affecting SND 40
3.4.1 DO 40
3.4.2 pH 40
3.4.3 C/N 41
3.4.4 Sludge flocs 41
3.5 Applications of SND 41
3.5.1 Moving bed biofilm reactors 42
3.5.2 Hybrid moving bed biofilm
reactor-membrane bioreactor systems 46
3.5.3 Aerobic granular sludge systems 47
Questions 51
References 52
Chapter 4 Nitrite-based anaerobic ammonia
oxidation (Anammox) 54
4.1 Discovery of nitrite-based Anammox 54
4.2 Nitrite-based Anammox stoichiometric
ratio 55
4.3 Nitrite-based Anammox microorganisms
and central metabolism 56
4.3.1 Diversity of functional bacteria for
nitrite-based Anammox 56
4.3.2 Central metabolic mechanism of
nitrite-based Anammox 58
4.4 Factors affecting Anammox of nitrite
type 62
4.4.1 Reactor impact 62
4.4.2 Influence of environmental factors 63
4.4.3 Substrate effects 65
4.5 Nitrite type Anammox main process 67
4.5.1 SHARON-ANAMMOX 69
4.5.2 CANON 70
4.5.3 Oxygen-Limited Autotrophic
Nitrification/Denitrification (OLAND) 72
4.5.4 Simultaneous partial Nitrification, Anammox and Denitrification (SNAD) 73
4.5.5 Partial Denitrification - Anammox (PD/A) 74
4.5.6 Denitrifying Anaerobic Methane
Oxidation/Anammox (DAMO/A) 75
Questions 77
References 77
Chapter 5 Matching nitrosation for Anammox 79
5.1 Matched nitrosation reaction 79
5.2 Process of realization of matched
nitrosation 80
5.2.1 Selection of reactor 80
5.2.2 Alkalinity 81
5.2.3 pH 83
5.2.4 DO content 85
5.2.5 HRT 86
5.3 Low temperature for matched nitrosation 86
5.4 Low substrate concentration for matched
nitrosation 89
5.5 Real-time reactor control 90
5.6 Microbial populations in matched
nitrosation systems 93
Questions 96
References 96
Chapter 6 Start-up of Anammox 98
6.1 The purpose and significance of quick startup 98
6.2 Initiation factor control 99
6.2.1 Selection of reactor 99
6.2.2 Selection of inoculated sludge 101
6.2.3 Selection of carrier 103
6.2.4 Start-up load 111
6.2.5 Low temperature start-up control 112
6.3 Start-up process characteristics 113
6.3.1 Start-up stage 113
6.3.2 Stoichiometry ratio 114
6.4 Microbial enrichment status 115
6.4.1 Trends and extent of microbial
enrichment 115
6.4.2 Enrichment population categories 116
6.5 Conclusions and prospects 117
Questions 117
References 118
Chapter 7 Promoters and inhibitors of
Anammox 120
7.1 Exogenous additives for improving the
Anammox process 121
7.1.1 Metals addition 122
7.1.2 Organic matter addition 127
7.1.3 Inorganic matter addition 129
7.1.4 Intermediates addition 131
7.1.5 N-acyl-homoserine lactones addition 132
7.2 Exogenous substances for inhibiting the
Anammox process 133
7.2.1 Different inhibitory factors of
Anammox process 133
7.2.2 Strategies to control the inhibition 142
Questions 145
References 145
Chapter 8 Coupling of Anammox and
denitrification 147
8.1 Reaction mechanism of simultaneous
Anammox and denitrification process 147
8.1.1 Stoichiometry in simultaneous Anammox
and denitrification 147
8.1.2 Microbiology in simultaneous Anammox
and denitrification 149
8.2 Research on the coupling of Anammox and
denitrification 151
8.2.1 The coupling reaction of Anammox and
denitrification 151
8.2.2 Start-up of coupled Anammox and
denitrification reactor 152
8.2.3 Factors influencing the coupling of
Anammox and denitrification 153
8.3 Microbial community of the simultaneous
Anammox and
denitrification process 159
8.4 Emerging extensions of simultaneous
Anammox-denitrification process 163
8.4.1 SAND 163
8.4.2 ADSF 167
8.4.3 SDA 169
Questions 171
References 171
Chapter 9 Anammox Granular sludge 173
9.1 Formation mechanism of Anammox granular
sludge 173
9.2 Factors influencing the development of
Anammox granules 175
9.2.1 Seed sludge 176
9.2.2 Substrate concentration 177
9.2.3 Hydraulic Retention Time (HRT) and Sludge Retention Time (SRT) 178
9.2.4 Temperature and pH 178
9.2.5 Hydraulic shear force and stirring
speed 179
9.2.6 Presence of inorganic ions 180
9.2.7 Extracellular polymeric substances (EPS) 180
9.2.8 Influence of nanoparticles present in
wastewater 181
9.3 Structure and microecology of Anammox
granular sludge 182
9.3.1 Properties of the Anammox granular
sludge 182
9.3.2 Microbial ecology of granular sludge 188
9.4 EPS of Anammox granular sludge 190
9.4.1 Compositional characteristics of EPS 190
9.4.2 Influencing factors of EPS 193
9.5 Application of Anammox granular sludge 196
9.6 Main factors affecting EPS secretion
and sludge granulation 197
9.6.1 Organic concentration 197
9.6.2 Nitrogen concentration and loading in
the reaction system 198
9.6.3 External mediator 199
9.6.4 Other influencing factors 199
9.7 Limitations of Anammox granulation 200
9.7.1 Flotation 200
9.7.2 Storage stability of Anammox granules
201
9.7.3 Susceptibility to heavy metals 202
9.8 Conclusions 203
Questions 204
References 204
Chapter 10 Application of Anammox 205
10.1 Urban domestic sewage 205
10.1.1 Realization of a compatible Anammox
process 205
10.1.2 Influencing factor 206
10.1.3 Treatment process 210
10.1.4 Engineering practice 214
10.2 Industrial wastewater 217
10.2.1 Landfill leachate 217
10.2.2 Monosodium glutamate wastewater 221
10.2.3 Rare earth wastewater 223
10.2.4 Pharmaceutical wastewater 225
10.3 Agricultural wastewater 227
10.3.1 Swine wastewater 227
10.3.2 Dairy wastewater 230
10.3.3 Aquatic aquaculture wastewater 231
Questions 234
References 234
Chapter 11 Sulfate-reducing ammonium
oxidation (sulfammox) 236
11.1 Introduction 236
11.2 Anthology of sulfammox studies 237
11.3 Mechanism of sulfammox 238
11.3.1 The presence of organic carbon
sources in the influent 238
11.3.2 No organic carbon sources in the
influent 239
11.4 Characteristics of microbes in
sulfammox 241
11.5 Environmental factors and operational
conditions affecting sulfammox 243
11.5.1 Process medium and feeding options 243
11.5.2 NH4 / SO42- ratio 244
11.5.3 COD addition 244
11.5.4 Temperature and pH 245
11.5.5 Spontaneity and oxidation-reduction
potential 246
11.5.6 Other factors 246
11.6 Applicable reactors and reported
efficiencies 246
11.7 Conclusions 247
Questions 251
References 251
Chapter 12 Fe (Ⅲ) reduction coupled to anaerobic ammonium oxidation
(Feammox) 253
12.1 Introduction 253
12.2 A collection of existing
investigations regarding the Feammox process 254
12.2.1 Anthology of Feammox studies 254
12.2.2 Unveiling of Feammox in the
environment and rate measurements 255
12.2.3 Feammox microbial functions 257
12.3 The artificial and natural factors
that affect the growth of Feammox
microorganisms 260
12.3.1 The ferric iron 260
12.3.2 Soil pH and redox potential 260
12.3.3 Dissolved oxygen 261
12.3.4 Temperature 261
12.3.5 Nitrite and nitrate 262
12.3.6 Carbon sources and electron shuttles 262
12.3.7 In situ soil nutrient
characteristics 264
12.4 Prospective: use of Feammox for practical large-scale wastewater
treatment 265
12.5 Conclusions 270
Questions 270
References 270
Chapter 13 Anaerobic Methane Oxidation (AOM) 272
13.1 Discovery and classification of
anaerobic methane oxidation 272
13.1.1 Discovery of anaerobic methane
oxidation 272
13.1.2 Classification of anaerobic methane
oxidation processes 273
13.1.3 Functional microorganisms of
anaerobic methane oxidation 274
13.2 Microbial metabolism of anaerobic
methane oxidation 277
13.2.1 Sulfate-dependent Anaerobic Methane
Oxidation (SAMO) 277
13.2.2 Denitrifying Anaerobic Methane
Oxidation (DAMO) 278
13.2.3 Metal-dependent Anaerobic Methane
Oxidation (metal-AOM) 280
13.2.4 Anaerobic methane oxidation with
other new electron acceptors 281
13.3 Physiological characteristics and
ecological distribution of the anaerobic
methanotrophic microorganisms 282
13.3.1 Anaerobic methanotrophic archaea 282
13.3.2 Anaerobic methanotrophic bacteria 283
13.4 Enrichment of anaerobic
methane-oxidizing microorganisms 285
13.5 Application potential of anaerobic
methane oxidation 286
Questions 287
References 287
Chapter 14 Hydrogen-based denitrification 289
14.1 Introduction 289
14.2 Fundamental of H2-based
denitrification 290
14.3 Microorganism involved in H2-based
MBfRs 291
14.4 The key control factors 293
14.4.1 Membrane materials 293
14.4.2 Reactor types 295
14.4.3 Biofilm management 295
14.4.4 H2 pressure 297
14.4.5 Nitrate loading 297
14.4.6 pH 298
14.5 Applications of H2-based MBfRs 298
Questions 300
References 300
猜您喜欢



