书籍详情

统计力学物理学经典(第4版 英文版)

统计力学物理学经典(第4版 英文版)

作者:〔美〕拉杰· 帕斯里亚(R. K. Pathria)〔美〕保罗·比尔(Paul D. Beale)

出版社:世界图书出版公司

出版时间:2025-04-01

ISBN:9787523218587

定价:¥139.00

购买这本书可以去
内容简介
  本书是统计力学课程的教材,第一版于1972年出版,至今已有五十多年的时间。本书是于2022年出版的第四版。本书共16章。第1章至第 9 章属于统计力学的基础知识。包括热力学的统计基础、系综理论的基本原理、正则系综、巨正则系综、量子统计学的表述形式、简单气体理论、理想玻色系统和理想费米系统,以及早期宇宙热力学;第 10 章至第 15 章的内容难度相对较高,包括相互作用系统的统计力学:集团展开法和量子场方法,涨落和非平衡统计力学,以及相变和临界现象的相关主题;最后一章则介绍了计算机模拟。此外在正文开始之前作者还增加了统计力学的历史介绍,能够满足对这部分历史感兴趣的读者。本书还提供了相当广泛的参考书目。书目中包含各种参考文献——既有旧的,也有新的;既有实验性的,也有理论性的;既有技术性的,也有教学性的。这将使本书对更多读者有用。
作者简介
  拉杰· 帕斯里亚(R. K. Pathria)是一位理论物理学家。他因研究液氦中的超流动性、热力学量的洛伦兹变换、晶格和的严格计算以及相变中的有限尺寸效应而闻名。帕特里亚于1953年和1954年分别获得霍希尔布尔潘贾布大学理学学士和理学硕士学位,并于1957年获得德里大学物理学博士学位。曾任教于他曾在德里大学、麦克马斯特大学、阿尔伯塔大学、昌迪加尔潘贾布大学和滑铁卢大学。于2000 年加入加利福尼亚大学圣地亚哥分校,担任物理学兼职教授。滑铁卢大学授予他“杰出教师奖”和“杰出名誉教授”称号,他还是美国物理学会会员。保罗·比尔(Paul D. Beale)是一位理论物理学家,科罗拉多大学博尔德分校的物理学教授。专攻统计力学,重点研究相变和临界现象。他的研究工作包括重正化群方法,分子系统的固液相变,以及分子偶极子层中的有序化等。他于1977年以最高荣誉获得北卡罗来纳大学教堂山分校物理学学士学位,并于1982年获得康奈尔大学物理学博士学位。1982—1984年,他在牛津大学理论物理系担任博士后助理研究员。1984年,他加入科罗拉多大学博尔德分校任助理教授,1991年晋升为副教授,1997年晋升为教授。2008—2016年,他担任物理系主任。他还曾担任文理学院自然科学副院长和荣誉项目主任。
目录
Preface to the fourth edition
Preface to the third edition
Preface to the second edition
Preface to the first edition
Historical introduction The statistical basis of thermodynamics 1.1. The macroscopic and the microscopic states
1.2. Contact between statistics and thermodynamics :physical significance of the number Ω(N, V, E)
1.3. Further contact between statistics and thermodynamics
1.4. The classical ideal gas
1.5. The entropy of mixing and the Gibbs paradox
1.6. The “correct" enumeration of the microstates
Problems Elements of ensemble theory 2.1. Phase space of a classical system
2.2. Liouville's theorem and its consequences
2.3. The microcanonical ensemble
2.4. Examples
2.5. Quantum states and the phase space
Problems
3.The canonical ensemble
3.1. Equilibrium between a system and a heat reservoir
3.2. A system in the canonical ensemble
3.3. Physical significance of the various statistical quantities in the canonical ensemble
3.4. Alternative expressions for the partition function
3.5. The classical systems
3.6. Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble
3.7. Two theorems-the “equipartition" and the “virial
3.8. A system of harmonic oscillators
3.9. The statistics of paramagnetism
3.10. Thermodynamics of magnetic systems: negative temperatures
Problems The grand canonical ensemble 4.1. Equilibrium between a system and a particle-energy reservoir
4.2. A system in the grand canonical ensemble
4.3. Physical significance of the various statistical quantities
4.4. Examples
4.5. Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
4.6. Thermodynamic phase diagrams
4.7. Phase equilibrium and the Clausius-Clapeyron equation
Problems Formulation of quantum statistics 5.1. Quantum-mechanical ensemble theory: the density matrix
5.2. Statistics of the various ensembles
5.3. Examples
5.4. Systems composed of indistinguishable particles
5.5. The density matrix and the partition function of a system of free particles
5.6. Eigenstate thermalization hypothesis
Problems The theory of simple gases 6.1. An ideal gas in a quantum-mechanical microcanonical ensemble
6.2. An ideal gas in other quantum-mechanical ensembles
6.3. Statistics of the occupation numbers
6.4. Kinetic considerations
6.5. Gaseous systems composed of molecules with internal motion
6.6. Chemical equilibrium
Problems ldeal Bose systems 7.1. Thermodynamic behavior of an ideal Bose gas
7.2. Bose-Einstein condensation in ultracold atomic gases
7.3. Thermodynamics of the blackbody radiation
7.4. The field of sound waves
7.5. Inertial density of the sound field
7.6. Elementary excitations in liquid helium II
Problems ldeal Fermi systems        8.1. Thermodynamic behavior of an ideal Fermi gas
8.2. Magnetic behavior of an ideal Fermi gas
8.3. The electron gas in metals
8.4. Ultracold atomic Fermi gases
8.5. Statistical equilibrium of white dwarf stars
8.6. Statistical model of the atom
Problems Thermodynamics of the early universe 9.1. Observational evidence of the Big Bang
9.2. Evolution of the temperature of the universe
9.3. Relativistic electrons, positrons, and neutrinos
9.4. Neutron fraction
9.5. Annihilation of the positrons and electrons
9.6. Neutrino temperature
9.7. Primordial nucleosynthesis
9.8. Recombination
9.9. Epilogue
Problems
10.Statistical mechanics of interacting systems: the method of cluster expansions
10.1. Cluster expansion for a classical gas
10.2. Virial expansion of the equation of state
10.3. Evaluation of the virial coeffcients
10.4. General remarks on cluster expansions
10.5. Exact treatment of the second virial coeffcient
10.6. Cluster expansion for a quantum-mechanical system
10.7. Correlations and scattering
Problems Statistical mechanics of interacting systems: the method of quantized fields 11.1. The formalism of second quantization
11.2. Low-temperature behavior of an imperfect Bose gas
11.3. Low-lying states of an imperfect Bose gas
11.4. Energy spectrum of a Bose liquid
11.5. States with quantized circulation
11.6. Quantized vortex rings and the breakdown of superfluidity
11.7. Low-lying states of an imperfect Fermi gas
11.8. Energy spectrum of a Fermi liquid: Landau's phenomenological theory
11.9. Condensation in Fermi systems
Problems Phase transitions: criticality, universality, and scaling 12.1. General remarks on the problem of condensation
12.2. Condensation of a van der Waals gas
12.3. A dynamical model of phase transitions
12.4. The lattice gas and the binary alloy
12.5. Ising model in the zeroth approximation
12.6. Ising model in the first approximation
12.7. The critical exponents
12.8. Thermodynamic inequalities
12.9. Landau's phenomenological theory
12.10. Scaling hypothesis for thermodynamic functions
12.11. The role of correlations and fluctuations
12.12. The critical exponents ν and η
12.13. A final look at the mean field theory
Problems Phase transitions: exact (or almost exact) results for various models 13.1. One-dimensional fluid models
13.2. The Ising model in one dimension
13.3. The n-vector models in one dimension
13.4. The Ising model in two dimensions
13.5. The spherical model in arbitrary dimensions
13.6. The ideal Bose gas in arbitrary dimensions
13.7. Other models
Problems Phase transitions: the renormalization group approach 14.1. The conceptual basis of scaling
14.2. Some simple examples of renormalization
14.3. The renormalization group: general formulation
14.4. Applications of the renormalization group
14.5. Finite-size scaling
Problems Fluctuations and nonequilibrium statistical mechanics 15.1. Equilibrium thermodynamic fluctuations
15.2. The Einstein-Smoluchowski theory of the Brownian motion
15.3. The Langevin theory of the Brownian motion
15.4. Approach to equilibrium: the Fokker-Planck equation
15.5. Spectral analysis of fluctuations: the Wiener-Khintchine theorem
15.6. The fluctuation-dissipation theorem
15.7. The Onsager relations
15.8. Exact equilibrium free energy differences from nonequilibrium measurements Computer Simulations 16.1. Introduction and statistics
16.2. Monte Carlo simulations
16.3. Molecular dynamics16.3.
16.4. Particle simulations
16.5. Computer simulation caveats
Problems
Appendices Influence of boundary conditions on the distribution of quantum states Certain mathematical functions “Volume” and “surface area” of an n-dimensional sphere of radius R On Bose-Einstein functions On Fermi-Dirac functions A rigorous analysis of the ideal Bose gas and the onset of Bose-Einstein condensation On Watson functions Thermodynamic relationships Pseudorandom numbers Bibliography
Index
猜您喜欢

读书导航