公钥密码学的数学基础(第二版)
作者:王小云 等
出版社:科学出版社
出版时间:2022-12-01
ISBN:9787030731111
定价:¥78.00
目录
第二版前言
第一版序
第一版前言
第1章 整除 1
1.1 整除的概念 1
1.2 最大公因子与最小公倍数 5
1.3 Euclid算法 10
1.4 求解一次不定方程——Euclid算法应用之一 13
1.5 整数的素分解 14
1.6 使用SageMath进行整除相关的计算 20
习题1 21
第2章 同余 23
2.1 同余的基本概念和基本性质 23
2.2 剩余类与剩余系 26
2.3 Euler定理 31
2.4 Wilson定理 34
2.5 使用SageMath进行同余相关的计算 37
习题2 38
第3章 同余方程 40
3.1 一元高次同余方程的概念 40
3.2 一次同余方程 43
3.3 一次同余方程组与孙子定理 44
3.4 一般同余方程 47
3.5 二次剩余 49
3.6 Legendre符号与acobi符号 52
3.7 使用SageMath求解同余方程 59
习题3 59
第4章 指数与原根 61
4.1 指数及其性质 61
4.2 原根及其性质 64
4.3 指标、既约剩余系的构造 67
4.4 n次剩余 72
4.5 使用SageMath进行指数与原根相关的计算 75
习题4 76
第5章 素数分布的初等结果 78
5.1 素数的基本性质与分布的主要结果介绍 78
5.2 Euler恒等式的证明 81
5.3 弱形式素数定理的证明 83
5.4 素数定理的等价命题 90
5.5 使用SageMath进行素数分布相关的计算 93
习题5 94
第6章 简单连分数 95
6.1 简单连分数及其基本性质 95
6.2 实数的简单连分数表示 98
6.3 连分数在密码学中的应用——对RSA算法的低解密指数攻击 103
6.4 使用SageMath进行简单连分数相关的计算 104
习题6 105
第7章 近世代数基本概念 106
7.1 映射 106
7.2 代数运算 109
7.3 带有运算集合之间的同态映射与同构映射 111
7.4 等价关系与分类 112
习题7 113
第8章 群论 114
8.1 群的定义 114
8.2 循环群 116
8.3 子群、子群的陪集 117
8.4 同态基本定理 121
8.5 有限群的实例 124
8.6 使用SageMath进行群论相关的计算 127
习题8 128
第9章 环与域 129
9.1 环的定义 129
9.2 整环、域、除环 131
9.3 子环、理想、环的同态 135
9.4 孙子定理的一般形式 140
9.5 欧氏环 142
9.6 有限域 144
9.7 商域 145
9.8 使用SageMath进行环与域相关的计算 148
习题9 151
第10章 公钥密码学中的数学问题 152
10.1 时间估计与算法复杂性 152
10.2 素检测 158
10.3 分解因子问题 160
10.4 RSA问题与强RSA问题 161
10.5 二次剩余 162
10.6 离散对数问题 164
10.7 使用SageMath求解公钥密码学中的数学问题 166
习题10 167
第11章 格的基本知识 168
11.1 基本概念 168
11.2 格相关的计算问题 169
11.3 格基约化算法 171
11.4 LLL算法应用 173
11.5 使用SageMath进行格相关的计算 179
习题11 179
参考文献 181