图机器学习
作者:克劳迪奥·斯塔迈尔,马京京
出版社:清华大学出版社
出版时间:2022-06-01
ISBN:9787302609599
定价:¥109.00
第1篇 图机器学习简介
第1章 图的基础知识 3
1.1 技术要求 3
1.2 图的定义 4
1.3 图的类型 8
1.3.1 有向图 8
1.3.2 多重图 10
1.3.3 加权图 11
1.3.4 二分图 12
1.4 图的表示方式 14
1.4.1 邻接矩阵 14
1.4.2 边列表 16
1.5 绘制图 17
1.5.1 networkx 17
1.5.2 Gephi 19
1.6 图属性 24
1.7 集成指标 24
1.7.1 距离、路径和最短路径 25
1.7.2 特征路径长度 26
1.7.3 全局和局部效率 26
1.8 隔离指标 28
1.8.1 聚类系数 28
1.8.2 传递性 29
1.8.3 模块度 30
1.9 中心性指标 30
1.9.1 度中心性 30
1.9.2 接近度中心性 31
1.9.3 中介中心性 31
1.10 弹性指标 33
1.11 图和网络模型示例 34
1.11.1 简单的图的示例 34
1.11.2 生成图模型 36
1.11.3 Watts-Strogatz(1998) 36
1.11.4 Barabási-Albert(1999) 36
1.12 基准数据集和存储库 38
1.12.1 网络数据存储库 38
1.12.2 斯坦福网络分析平台 43
1.12.3 开放图基准 44
1.13 处理大图 44
1.14 小结 46
第2章 图机器学习概述 47
2.1 技术要求 47
2.2 理解在图上执行的机器学习 48
2.2.1 机器学习的基本原理 48
2.2.2 在图上执行机器学习的优势 50
2.3 泛化的图嵌入问题 52
2.4 图嵌入机器学习算法的分类 58
2.4.1 编码器和解码器架构 58
2.4.2 嵌入算法的分类 59
2.4.3 嵌入算法的有监督和无监督版本 60
2.5 小结 61
第2篇 基于图的机器学习
第3章 无监督图学习 65
3.1 技术要求 65
3.2 无监督图嵌入算法的层次结构 66
3.3 浅层嵌入方法 67
3.4 矩阵分解 67
3.4.1 图分解 68
3.4.2 高阶邻近保留嵌入 69
3.4.3 具有全局结构信息的图表示 71
3.5 Skip-Gram模型 73
3.5.1 DeepWalk算法 75
3.5.2 Node2Vec算法 77
3.5.3 Edge2Vec算法 79
3.5.4 Graph2Vec算法 80
3.6 自动编码器 83
3.6.1 TensorFlow和Keras—强大的组合 85
3.6.2 第一个自动编码器 86
3.6.3 去噪自动编码器 90
3.6.4 图自动编码器 92
3.7 图神经网络 94
3.7.1 图神经网络的变体 95
3.7.2 谱图卷积 96
3.7.3 空间图卷积 99
3.7.4 实践中的图卷积 100
3.8 小结 102
第4章 有监督图学习 105
4.1 技术要求 105
4.2 有监督图嵌入算法的层次结构 106
4.3 基于特征的方法 107
4.4 浅层嵌入方法 110
4.4.1 标签传播算法 110
4.4.2 标签扩展算法 115
4.5 图正则化方法 118
4.5.1 流形正则化和半监督嵌入 118
4.5.2 神经图学习 120
4.5.3 Planetoid 128
4.6 图卷积神经网络 130
4.6.1 使用GCN进行图分类 130
4.6.2 使用GraphSAGE进行节点分类 132
4.7 小结 134
第5章 使用图机器学习技术解决问题 135
5.1 技术要求 135
5.2 预测图中缺失的链接 136
5.3 基于相似性的方法 137
5.3.1 基于索引的方法 137
5.3.2 基于社区的方法 138
5.4 基于嵌入的方法 140
5.5 检测有意义的结构 144
5.5.1 基于嵌入的社区检测 144
5.5.2 谱方法和矩阵分解 146
5.5.3 概率模型 147
5.5.4 成本函数最小化 147
5.6 检测图相似性和图匹配 149
5.6.1 基于图嵌入的方法 151
5.6.2 基于图核的方法 151
5.6.3 基于图神经网络的方法 152
5.6.4 应用 152
5.7 小结 153
第3篇 图机器学习的高级应用
第6章 社交网络图 157
6.1 技术要求 157
6.2 数据集概述 158
6.2.1 数据集下载 158
6.2.2 使用networkx加载数据集 159
6.3 网络拓扑和社区检测 161
6.3.1 拓扑概述 161
6.3.2 节点中心性 162
6.3.3 社区检测 165
6.4 有监督学习和无监督学习任务 166
6.4.1 任务准备 167
6.4.2 基于node2vec的链接预测 168
6.4.3 基于GraphSAGE的链接预测 169
6.4.4 人工设计特征以执行链接预测 174
6.4.5 结果汇总 175
6.5 小结 176
第7章 使用图进行文本分析和自然语言处理 177
7.1 技术要求 177
7.2 提供数据集的快速概览 178
7.3 自然语言处理的主要概念和工具 179
7.3.1 文本分割和分词 181
7.3.2 词性标记器 181
7.3.3 命名实体识别 182
7.3.4 依存解析器 182
7.3.5 词形还原器 183
7.4 从文档语料库创建图 184
7.4.1 知识图 184
7.4.2 二分图 186
7.4.3 实体-实体图 190
7.4.4 注意维度—过滤图 191
7.4.5 分析图 193
7.4.6 社区检测 195
7.4.7 使用Node2Vec算法 196
7.4.8 文档-文档图 197
7.4.9 主题-主题图 200
7.5 构建文档主题分类器 203
7.5.1 浅层学习方法 204
7.5.2 图神经网络 207
7.6 小结 215
第8章 信用卡交易的图分析 217
8.1 技术要求 217
8.2 数据集概览 218
8.3 加载数据集并构建图 219
8.3.1 加载数据集 219
8.3.2 二分法 220
8.3.3 三分法 221
8.3.4 探索已生成的图 223
8.4 网络拓扑和社区检测 224
8.4.1 网络拓扑结构 224
8.4.2 社区检测 228
8.5 有监督和无监督欺诈检测 233
8.5.1 欺诈交易识别的有监督方法 234
8.5.2 欺诈交易识别的无监督方法 236
8.6 小结 238
第9章 构建数据驱动的图应用程序 239
9.1 技术要求 239
9.2 Lambda架构概述 240
9.3 用于图驱动应用程序的Lambda架构 242
9.3.1 图处理引擎 243
9.3.2 图查询层 246
9.3.3 Neo4j 246
9.3.4 JanusGraph 248
9.3.5 在Neo4j和GraphX之间进行选择 251
9.4 小结 252
第10章 图的新趋势 253
10.1 技术要求 253
10.2 了解图的数据增强技术 253
10.2.1 采样策略 254
10.2.2 探索数据增强技术 254
10.3 了解拓扑数据分析 255
10.4 拓扑机器学习 257
10.5 图论在新领域的应用 258
10.5.1 图机器学习和神经科学 258
10.5.2 图论与化学和生物学 260
10.5.3 图机器学习和计算机视觉 260
10.5.4 图像分类与场景理解 260
10.5.5 形状分析 261
10.5.6 推荐系统 261
10.6 小结 262