机器人数学基础
作者:吴福朝,张铃
出版社:清华大学出版社
出版时间:2021-08-01
ISBN:9787302559696
定价:¥99.00
第一部分矩阵理论与应用
第1章正交与对角化
1.1欧氏空间
1.1.1基本概念
1.1.2正交矩阵
1.2酉空间
1.2.1基本概念
1.2.2酉矩阵
1.3正规矩阵
1.3.1舒尔引理
1.3.2正规矩阵
1.3.3正交谱分解
1.4轭米特矩阵
1.4.1特征值的极性
1.4.2半正定轭米特矩阵
1.4.3与酉矩阵的关系
1.5反对称矩阵
1.5.1三阶反对称矩阵
1.5.2正交相似标准形
1.5.3与旋转矩阵的关系
习题
第2章矩阵分解
2.1正交三角分解
2.1.1吉文斯方法
2.1.2豪斯荷德方法
2.2三角分解
2.2.1乔里斯基分解
2.2.2杜利特分解
2.3奇异值分解
2.3.1正交对角分解
2.3.2奇异值分解
2.3.3奇异值的极性
2.4线性最小二乘
2.4.1满秩最小二乘
2.4.2亏秩最小二乘
2.4.3齐次最小二乘
习题
第3章矩阵分析
3.1向量与矩阵范数
3.1.1向量范数
3.1.2矩阵范数
3.1.3矩阵条件数
3.2矩阵级数与函数
3.2.1矩阵序列
3.2.2矩阵级数
3.2.3矩阵函数
3.3矩阵导数
3.3.1函数矩阵的导数
3.3.2向量映射对向量的导数
3.3.3函数对矩阵的导数
3.3.4矩阵映射对矩阵的导数
3.3.5矩阵的全微分
习题
第二部分数值计算与分析
第4章插值与拟合
4.1多项式插值
4.1.1基本概念
4.1.2拉格朗日插值法
4.1.3牛顿插值法
4.1.4插值误差
4.1.5切比雪夫插值法
4.2分段低次插值
4.2.1分段线性和二次插值
4.2.2分段三次轭米特插值
4.2.3分段三次样条插值
4.3最小二乘拟合
4.3.1基本概念
4.3.2线性最小二乘拟合
4.3.3非线性最小二乘拟合
习题
第5章非线性方程(组)
5.1非线性方程
5.1.1二分法
5.1.2牛顿法
5.1.3拟牛顿法
5.1.4不动点法
5.2非线性方程组
5.2.1多元牛顿法
5.2.2多元拟牛顿法
5.2.3多元不动点法
习题
第6章非线性优化
6.1基本概念
6.1.1非线性优化问题
6.1.2局部极值定理
6.1.3基本迭代格式
6.2一维搜索
6.2.1精确搜索
6.2.2非精确搜索
6.3无约束优化
6.3.1最速下降法
6.3.2牛顿法
6.3.3拟牛顿法
6.3.4共轭方向法
6.3.5莱文贝格马夸特方法
6.4约束优化
6.4.1最优性条件
6.4.2惩罚法
6.4.3乘子法
习题
第7章微分方程
7.1初值问题
7.1.1基本概念
7.1.2存在性、唯一性和连续性
7.1.3数值微积分
7.2单步方法
7.2.1欧拉法
7.2.2中点法与梯形法
7.2.3龙格库塔法
7.2.4收敛性与稳定性
7.3多步法
7.3.1阿当姆斯法
7.3.2一般线性多步法
7.3.3预测校正法
7.4边值问题
7.5有限差分法
7.5.1线性问题
7.5.2非线性问题
7.6有限元法
7.6.1基本思想
7.6.2线性B样条函数
7.6.3数值解法
习题
第三部分概率与统计
第8章贝叶斯推断
8.1先验分布与后验分布
8.1.1基本概念
8.1.2确定先验分布的方法
8.1.3正态参数的后验分布
8.1.4一些常用分布参数的后验分布
8.2贝叶斯估计
8.2.1点估计
8.2.2区间估计
8.3预测推断
8.4假设检测
8.4.1后验机会比
8.4.2贝叶斯因子
8.5模型选择
8.5.1贝叶斯方法
8.5.2信息准则
习题
第9章贝叶斯决策
9.1贝叶斯风险与后验风险
9.1.1决策函数和风险函数
9.1.2贝叶斯风险
9.1.3后验风险
9.2一般损失下的贝叶斯估计
9.2.1平方损失
9.2.2二次损失
9.2.3绝对损失
9.2.4线性损失
9.2.501损失
9.2.6两点注释
9.3极小极大准则
9.4EM和GEM算法
9.4.1EM算法
9.4.2收敛性与估计精度
9.4.3GEM算法
9.4.4混合模型
习题
第10章马尔可夫链
10.1转移概率
10.1.1基本概念
10.1.2转移概率
10.2状态的类型
10.2.1周期性、常返性和遍历性
10.2.2类型的判别
10.2.3状态空间的分解
10.3渐近性质与平稳分布
10.3.1渐近性质
10.3.2平稳分布
10.4隐马尔可夫模型
10.4.1基本概念
10.4.2概率计算
10.4.3模型估计
10.4.4状态预测
习题
第四部分射影几何与非欧几何
第11章平面射影几何
11.1射影平面
11.1.1基本概念
11.1.2点线对偶
11.1.3交比
11.2二次曲线
11.2.1矩阵表示
11.2.2配极对应
11.2.3对偶二次曲线
11.3二维射影变换
11.3.1基本概念
11.3.2变换群与不变量
11.4恢复场景的几何结构
11.4.1中心投影
11.4.2仿射结构
11.4.3相似结构
11.4.4欧氏结构
习题
第12章空间射影几何
12.1射影空间
12.1.1点与平面
12.1.2空间直线
12.1.3平面束的交比
12.2二次曲面
12.2.1基本概念
12.2.2绝对二次曲线
12.2.3二次曲面的对偶
12.2.4绝对对偶二次曲面
12.3三维射影变换
12.3.1基本概念
12.3.2二次曲面的变换
12.3.3仿射变换
12.3.4相似变换
12.3.5等距变换
12.3.6射影坐标系
12.4摄像机几何
12.4.1成像模型
12.4.2摄像机矩阵的元素
12.4.3投影与反投影
习题
第13章非欧几何简介
13.1椭圆几何
13.1.1椭圆测度
13.1.2椭圆几何模型
13.2双曲几何
13.2.1双曲测度
13.2.2双曲几何模型
13.3高维非欧几何
13.3.1高维射影空间
13.3.2高维非欧几何
参考文献