书籍详情

电子产品制造工艺多场多尺度建模分析

电子产品制造工艺多场多尺度建模分析

作者:李辉 等

出版社:电子工业出版社

出版时间:2022-11-01

ISBN:9787121444807

定价:¥98.00

购买这本书可以去
内容简介
  本书介绍了两种典型电子产品汽车压力传感器和FPCB的制造工艺研究,分别对其关键制造工艺过程进行了多场多尺度建模分析,涵盖了分子动力学与有限元建模分析、工艺参数设计与化、工艺性能实验验证。全书共10章,汇集了两种典型电子产品的关键工艺过程,括铜-铜引线键合工艺中微观接触过程,六种典型材料引线键合工艺性能比较,汽车压力传感器灌封工艺中芯片残余应力分析,汽车压力传感器引线键合焊点的热循环失效分析,FPCB化锡工艺分子动力学研究,FPCB曝光工艺中光场分析,FPCB蚀刻工艺中蚀刻剂喷淋性研究,FPCB蚀刻腔中蚀刻剂浓度分布与流场性分析,FPCB蚀刻工艺中蚀刻腔几何形貌演化过程分析,FPCB多蚀刻腔蚀刻过程分析。本书针对MEMS和FPCB制造工艺中的实际问题,建立物理模型和数值模拟模型,基于有限元和分子动力学方法,模拟电子产品制造过程中材料、微观结构的演变,揭示加工过程中电子产品变形、应力、缺陷的形成机理与演化机制,在此基础上提出变形、应力与缺陷的抑制策略及调控理论,指导工艺化,提高电子产品良率。
作者简介
暂缺《电子产品制造工艺多场多尺度建模分析》作者简介
目录
Chapter 1 Investigation on micro contact in Cu-Cu wire bonding process 001 
1.1 Introduction 001 
1.2 Molecular dynamics modeling of Cu-Cu wire bonding 003 
1.3 Results and discussions 005 
1.3.1 Formation and breakage processes of Cu-Cu weld 005 
1.3.2 Analysis of Cu-Cu indentation morphology 007 
1.3.3 Analysis of Cu-Cu atomic stress distribution 008 
1.4 Conclusions 011 
References 011 
Chapter 2 Investigation on wire bonding performance with six typical 
material pairs 014 
2.1 Introduction 015 
2.2 Molecular dynamics modeling of six material pairs 016 
2.3 Results and discussions 018 
2.3.1 Analysis of bonding forces and system energy 018 
2.3.2 Analysis of atomic morphology for six material pairs 022 
2.3.3 Analysis of atomic stress distribution for six material pairs 023 
2.3.4 Four critical displacement points of six material pairs 025 
2.4 Conclusions 028 
References 028 

Chapter 3 Investigation on residual stress on chip of automobile 
pressure sensor in potting process 032 
3.1 Introduction 032 
3.2 Thermal experiment of MEMS pressure sensor 034 
3.3 Analytic analysis of thermal stress on sensitive structure 036 
3.4 Modeling and Simulation 038 
3.4.1 Geometric model of MEMS pressure sensor 039 
3.4.2 Finite element model of MEMS pressure sensor 039 
3.4.3 Finite element simulation of residual stress 040 
3.5 Conclusions 044 
References 045 
Chapter 4 Investigation on thermal cycle failure of wire bonding 
weld in automobile pressure sensor 047 
4.1 Introduction 048 
4.2 Thermal cycling experiments of the MEMS pressure sensor 049 
4.2.1 A sample of thermal cycling test 049 
4.2.2 Experimental methods of the thermal fatigue test 050 
4.2.3 Experimental results and analysis under thermal cycles 052 
4.3 Numerical simulation 053 
4.3.1 Theoretical model of thermal fatigue 053 
4.3.2 Geometric model of the MEMS pressure sensor 055 
4.3.3 Simulation model of thermal fatigue of solder joint 056 
4.3.4 Simulation results of solder joint failures 058 
4.4 Conclusions 062 
References 063 
Chapter 5 Investigation on acoustic injection on automobile 
MEMS accelerometer 066 
5.1 Introduction 066 
5.2 Experimental investigation of acoustic injection 068 
5.3 Modeling and simulation 070 
5.3.1 Disassembly of inertial measurement unit (IMU) 
MPU6050 070 
5.3.2 Geometric model of accelerometer unit 070 
5.3.3 Finite element model of accelerometer sensitive structure 072 
5.3.4 Simulation results and discussion of acoustic injection 074 
5.4 Conclusions 080 
References 081 
Chapter 6 Investigation on wetting behavior of Sn droplet on FPCB 
substrate surfaces 083 
6.1 Introduction 083 
6.2 Models and methods of different surfaces 085 
6.2.1 Modified embed atom method (MEAM) potential 086 
6.2.2 Simulation models of different surfaces 087 
6.2.3 Experimental procedures of wetting behavior 
on different surfaces 090 
6.3 Results and discussion 090 
6.3.1 Effect of temperature on wetting behavior 090 
6.3.2 Effect of roughness on wetting behavior 094 
6.3.3 Effect of Sn surface on wetting behavior 097 
6.3.4 Contact angle measurement on different substrate surfaces 101 
6.4 Conclusions 103 
References 103 
Chapter 7 Investigation on etchant spraying characteristics in FPCB 
etching process 107 
7.1 Introduction 108 
7.2 Equipment of the FPCB etching process 110 
7.3 Numerical simulation of multi-nozzle spraying system 111 
7.3.1 Governing equations of fluid dynamics 111 
7.3.2 Simulation model of spraying equipment 112 
7.4 Results and discussions 114 
7.5 Conclusions 122 
References 123 

Chapter 8 Investigation of etchant concentration distribution and 
fluid characteristics in FPCB etching cavity 126 
8.1 Introduction 126 
8.2 Model formulation and method of etching process 129 
8.2.1 Governing equations of fluid dynamics and mass flux 129 
8.2.2 Simulation model of the FPCB etching cavity 130 
8.3 Results and discussions 133 
8.4 Conclusions 140 
References 140 
Chapter 9 Investigation of etching cavity evolution in FPCB 
etching process 143 
9.1 Introduction 143 
9.2 Equipment of the FPCB etching process 144 
9.3 Numerical simulation of the FPCB etching process 146 
9.3.1 Governing equations of the fluid dynamics 146 
9.3.2 Simulation model of spraying and etching domain 147 
9.4 Results and discussions 149 
9.5 Conclusions 153 
References 153 
Appendix 156  
猜您喜欢

读书导航