数学
-
关于特殊矩阵的完备化与符号矩阵的最小秩的研究牟谷芳本书分为8章。第1章介绍了国内外发展状况、研究意义及主要研究内容。第2章研究了严格对角占优P-矩阵和完全非负(TN)矩阵的直和问题,以及不完备完全非负(TN)矩阵的完成问题。第3章讨论了不完备正P-矩阵在k-通弦图和k-通弦块图下的完备化问题,从而得到不完备正P-矩阵的k-通弦图和k-通弦块图在一定条件能够完备化;同时研究了不完备正P-矩阵的k-通弦图和k-通弦块图的逆零完成问题。第4章借助无向图研究了不完备的位置对称□(特殊字符)矩阵的完备化问题和利用有向图研究了不完备的位置非对称□(特殊字符)矩阵的完备化问题。第5章研究了零-非零模式矩阵的最小秩与逆矩阵,以及利用有向图的结构与性质研究非对称零.非零模式矩阵P(Γ)在线性有向2-树下的最小秩问题;同时讨论了非对称零-非零模式矩阵在非线性有向2-树下的最小秩问题,获得6阶非对称的零-非零模式矩阵的最小秩mr(P(Γ))为tri(P(Γ))。第6章研究了符号模式矩阵P的**SNS-矩阵和最小秩问题,以及将符号有向图转换为符号二部图G(U,V)以研究P的SNS-符号模式子矩阵问题,并提供算法以构造G(U,V)中带有**完美匹配M"的子图G(U',V'),且M"-交替e圈的基数为偶数;由算法获得了P的SNS-符号模式子矩阵。第7章研究了符号模式矩阵的迫零集与不完全的三对角符号模式矩阵的最小秩完备化问题,以及将符号模式矩阵所对应的图转换为符号二部图,通过算法有效地构造符号二部图的完美匹配以确定一般符号模式矩阵的二部迫零数,且获得全符号模式矩阵最小秩的下界;此外,利用全符号模式矩阵的二部迫零法研究了不完备的三对角全符号模式矩阵的最小秩完备化问题。第8章研究了符号矩阵最小秩在复杂网络系统的可控性中的应用,以及通过计算符号图的零迫数从而获得有向网络系统的最小驱动节点数。 -
纽结理论英文[俄]瓦西里.曼图洛夫纽结理论是数学学科代数拓扑的一个分支,按照数学上的术语来说,是研究如何把若干个圆环嵌入到三维实欧氏空间中去的数学分支。纽结理论在现代数学中发挥了很大的作用,人们已经在过去的20年中得到了有关这个理论的意义的结果。该书的目的是描述现代纽结理论的主要概念,以及对初学者和专业学者来说都很有用的完整的证明。《纽结理论(第二版)英文》的大部分内容来自作者对虚纽结理论的研究结果。 -
稀疏统计学习(美)特雷弗·哈斯蒂,罗伯特·蒂布希拉尼,马丁·温赖特稀疏统计模型只具有少数非零参数或权重,经典地体现了化繁为简的理念,因而广泛应用于诸多领域。本书就稀疏性统计学习做出总结,以LASSO方法为中心,层层推进,逐渐囊括其他方法,深入探讨诸多稀疏性问题的求解和应用;不仅包含大量的例子和清晰的图表,还附有文献注释和课后练习,是深入学习统计学知识的参考。本书适合计算机科学、统计学和机器学习的学生和研究人员。 -
数学家的故事尹逊波本书用简洁的文字介绍了50位数学家的主要经历、学术成就、治学态度和治学方法。其中,包括29位中国的数学家和21位国外数学史上有代表性的数学家。本书挖掘的重点立足于以下两方面:对于国内数学家,在介绍其个人成长经历的同时,更重视介绍其突出成果及贡献,增强学生的爱国热情和民族自豪感。对于国外数学家,重点放在其个人成长中正能量的元素,突出其人生观、世界观及价值观中对学生有启示的方面。本书特色在于融入近几年课程思政、数学文化及新工科教学改革的相关成果,既有深度,又有广度和温度。本书是数学学习的补充读物,也是数学思政的参考书。既可以供大中小学学校师生参考,又可供广大数学爱好者阅读。 -
科学技术哲学探新·范畴篇肖峰技术、信息、人是当代哲学关注的对象,由此形成了技术哲学、信息哲学和人学几大繁盛的哲学分支,本书从这几大分支中的若干基本范畴出发,进行一种基于分析哲学的语义透视,从而将相关研究推进到新的深度,并形成一种关联性的研究视界:信息技术与人的发展,从而为哲学探新在信息技术时代开拓新的生长点。全书分为技术哲学篇、信息哲学篇、人力篇等三篇。本书横跨技术哲学、信息哲学和人学、又侧重从基本范畴的语义分析上进行专门研究的著作,从语义研究上拓展科技哲学的新疆界。 -
卷绕John Roe卷绕数是拓扑学中基本的不变量之一。它测量一个动点P绕一个不动点Q运动的次数,前提是P的运动路径不经过Q并且P的终位置和它的起始位置相同。这个简单的想法有着深远的应用。通过本书的学习,读者将了解以下内容:卷绕数如何帮助我们证明每个多项式方程都有一个根(代数基本定理),保证通过单个平面切割对空间中三个对象进行公平划分(火腿三明治定理),解释为什么每个简单的闭曲线都有内部和外部(Jordan 曲线定理),将微积分与曲率和向量场的奇点联系起来(Hopf指数定理),允许从无穷中减去无穷并得到一个有限的答案(Toeplitz算子),推广给出关于矩阵群拓扑的一个基本且美丽的洞见(Bott周期性定理)。本书适合对卷绕数的概念及其在分析、微分几何和拓扑等数学领域中的应用感兴趣的本科生和研究生阅读。本书涉及很多领域,但它以一种清晰而审慎的方式来表述,对于有所准备的大学生来说,这将是一本极好的读物。本书也是一项重要的研究,即一个直观的想法如何将人带入数学研究的深海。—John McCleary, Mathematical Reviews大学数学老师经常发现自己阅读了很多有关该主题的书。但即使对我们这些爱读书的人来说,当你读了大约十本线性代数书籍后(它们看起来都像是出自同一个模具),这个过程偶尔也会变得不那么吸引人了。因此,偶然发现一本真正独特的书是非常愉快的,它以一种特有的方式阐述了一个主题,并教给你一些以前不知道的东西。如果这本书在这方面还做得非常好,那就更好了,就像本书一样……Roe的写作风格简洁,但清晰而优雅;我读这本书的时候几乎能听到英国口音。这种清晰的写作风格和大量的附录使得本书更易于阅读。—MAA Online -
数学分析专题研究尹枥本书选取了数学分析中的一些重要专题进行讲解,例题内容丰富,难度适宜.本书共分十章,分别介绍了特殊极限、连续性、导数与微分、函数方程与不等式、不定积分与定积分、函数逼近、数项级数与函数项级数、广义积分与含参量积分、多元函数微分学和多元函数积分学的相关理论.本书适合大学师生及数学爱好者参考阅读. -
立体几何[俄]沙雷金 编著 阮可之 译本书首先介绍了立体几何概况,正文共包括三部分∶第1部分为计算题;第 2部分为问题和定理,第3部分为杂题,并给出了以上内容习题部分的答案、提示及解答。本书适合高中生、参加数学竞赛的选手及数学爱好者阅读及收藏。 -
受控理论与初等不等式石焕南本书共分为7章,第1章和第2章介绍了受控理论的基本概念和主要定理,以及中国学者对受控理论的一些推广,第3章和第4章介绍了受控理论在对称函数不等式中的应用,第5章、第6章和第7章分别介绍了受控理论在数列不等式,二元均值不等式和几何不等式中的应用.本书适合中学生,数学教师及初等数学研究人员参考阅读. -
二次型和 Clifford 群的算术和解析理论Goro Shimura在本书中,著名数学家、Steele 奖得主志村五郎以清晰易读的风格,介绍了一个全新的数学领域。书中主题包括 Witt 定理和二次型上的 Hasse 原理、Clifford 代数的代数理论、自旋群和自旋表示。作者还给出了一些在其他地方不容易找到的基本结果。本书的两个重要主题是:(1) 二次 Diophantus 方程,(2) 正交群和 Clifford 群上的 Euler 积和 Eisenstein 级数。个主题的起点是 Gauss 的结果:一个整数作为三个平方和的本原表示的个数本质上是本原二元二次型的类数。本书给出了这一结果在代数数域中任意二次型上的推广及其各种应用。对于第二个主题,作者证明了与 Clifford 群或正交群上的 Hecke 本征形式相关联的 Euler 积存在亚纯连续性。对于这样的群上的 Eisenstein 级数,结论也是如此。本书基本上是自封的,只需要读者熟悉代数数论的相关知识。对于一些标准的事实,作者在叙述时给出了附有详细证明的参考文献。
