数学
-
第77-86届莫斯科数学奥林匹克苏淳包含了2014~2023年举办的第77?86届莫斯科数学奥林匹克的全部试题。书中对每一道试题都给出了详细解答, 对有些试题还作了延伸性的讨论。对于一些我国读者难以理解的内容和一些较为陌生的数学概念, 都以编译者注的形式给出了注释。为便于阅读, 还在书中的专题分类中对有关数学知识和解题方法作了介绍。可供对数学奥林匹克感兴趣的学生阅读, 也可供教师、数学小组的指导者、各种数学竞赛活动的组织者参考使用。 -
长杆高速/超高速侵彻陈小伟,焦文俊,宋文杰《长杆高速/超高速侵彻:理论模型与数值分析》共14章,主要基于作者及相关合作者近10年的研究成果,给出了长杆高速侵彻和超高速侵彻的理论模型和数值分析。内容包括长杆高速侵彻的理论模型、长杆侵彻应用之自锐穿甲和分段杆侵彻、界面击溃的理论模型和数值模拟,以及长杆超高速侵彻的理论模型。 -
斯蒂尔杰斯定理积分刘培杰数学工作室本书共分三编:第一编为引言,主要介绍了Stieltjes与Stieltjes积分、Radon-Stieltjes积分等;第二编为性质篇,主要介绍了Stieltjes积分和抽象积分的极限性质、Riemann-Stieltjes积分和积分中值定理等相关知识;第三编为应用篇,重点介绍了Stieltjes积分及其应用、用Lebesgue-Stieltjes积分定义的双曲型方程广义解等知识.本书适合大学师生及数学爱好者阅读参考. -
初识高等数学[俄] Л.С. 庞特里亚金 著,李植苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。 -
中国古典数学史话郭书春《中国古典数学史话》是弘扬中国传统数学文化的科普佳作,由国际科学史研究院通讯院士、资深数学史专家郭书春著,本书分四个阶段概括性的介绍了中国古典数学的发展历程,作者力求深入浅出、明白晓畅地以当代眼光审视和解读古代典籍,启发读者从中汲取古人的智慧和历史的经验,借以育人,更好地为今人所取、为今人所用,最大限度地发挥以文化人的作用。 -
代数学教程 第2卷王洪飞本书共4章,介绍了群论基础、环论基础、域论基础、伽罗瓦理论的相关知识.本书适合高等学校数学相关专业师生及数学爱好者阅读参考. -
思维的定律刘培杰 杜莹雪 编乔治·布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为“思维的定律”,理由是命题代数和思维过程的原则紧密相联。新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。 -
康托集的豪斯道夫维数刘培杰数学工作室本书共分3篇,详细介绍了豪斯道夫维数的定义、性质、相关定理,以及各类康托集的豪斯道夫测度,还介绍了希尔宾斯基地毯上的豪斯道夫维数等等.本书适合高等院校的师生及数学爱好者参考阅读。 -
数学谜题Peter Winkler 著,陈晓敏本书由CRC出版社于2020年12月出版,是作者关于数学谜题的最新力作。谜题的选择是区分本书和其他同类读物的重要标准,本书所列问题包含了当前最好的数学谜题且十分有趣,其背后是大量的现代数学,尤其是组合数学和计算机科学中重要的、前沿的内容、思想和方法。每章均介绍了解决数学谜题的技巧和例子,并在之后的数学定理证明中运用了这些技巧,对读者理解高深的数学内容有很好的启示作用。本书的出版可让国内更多的高校师生、数学爱好者甚至科研人员能够深入接触到这一宝藏,并从中受益匪浅。 书中给出三百多道数学趣题及提示,并在主体部分详细阐述所有谜题的分析、解答以及深入讨论。这些趣味横生的数学谜题涉及数学的各个方面,包括基本的组合计数、图论、概率和期望、游戏和博弈论、逻辑和集合论、高维空间几何、信息论等,可作为广大数学爱好者、大中学师生以及科研工作者提高数学素养的上佳读物。 -
数学解析理论[苏]别尔曼特 著; 数学解析理论翻译组 译数学奥林匹克是较高层次的数学竞赛,在数学的发展中起着至关重要的作用。本书汇集了第1届至第20届中国东南地区数学奥林匹克竞赛试题及解答,内容翔实。本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者参考阅读。
