数学
-
数学与创造张楚廷书中首先对观察力、记忆力、思维力、想象力、运算能力这些创造的智力因素,以及社会、兴趣、毅力、环境等创造的智力因素,进行了理论上的探讨,并列举了许多数学上的实例做进一步的说明。对于数学创造这个高智力的复杂活动,书中也做了,深入的研究。在阐述了数学创造的动机与应用之后,还用了相当的篇幅讲述了数学与其他学科领域的创造的联系、数学创造的方法等。 -
数学与经济史树中本书分12章论述了数学与经济学的关系,既有严肃的理论探讨,又有具体的实例分析。内容包括经济学中运用数学的历史,对可用数学研究的经济学和经济学研究中的数学的看法,数学在经济学中的均衡,计划和市场、竞争与互利等方面研究中的作用,以及对数学与经济学共同发展的展望等。 -
数学与文化齐民友本书分3章探讨了数学与文化的关系。作者从数学和文化起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代化科学技术方面,更重要的是它表现了一种理性主义的探索精神。 -
数学与教育丁石孙 张祖贵本书分6章论述了数学与教育的关系、数学的重要性、数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能、社会科学教育功能、人文科学教育功能与思维教育功能。 -
化归与归纳 类比 联想史久一 朱梧槚化归,就是通过某种转化,将复杂的问题转化成某一类已解决或较容易的问题,是数学方法论中重要的思想之一。本书所有的数学知识都被限制在中学范围以内,能使一般读者以很高的视角去看待数学,并掌握化归这种在生活中十分重要的思维方式。 -
数学证明是怎样的一项数学活动?萧文强大家在中小学课程里都会碰到某种程度的数学证明,有些人甚至把做数学与进行数学证明等同起来。但究竟数学证明这种功夫在数学活动中有何作用?它是否真正确立了无可置疑的结论?它是事后的装扮功夫抑或它能导致前所未知的新发现?这种独特的思考方式是怎样发展起来的?本书从数学史的角度出发,试以大量实例与读者探讨以上问题。 -
数学方法溯源欧阳绛《数学方法溯源》所说的数学方法,主要指学习和研究数学的方法,也包括把数学应用于实际的方法。数学家所走过的探索之路也往往体现了数学的方法。《数学方法溯源》一方面从数学方法的角度去探讨数学史,从活生生的数学发展中抽象出数学思想方法这根主线;另一方面,叉要立足于历史的观点去研究数学方法,即把数学方法置身于历史的背景下去分析和考察,从而充分认识其存在的理由。 -
混沌与均衡纵横谈梁美灵 王则柯《混沌与均衡纵横谈》围绕混沌理论和经济均衡理论计算方法,着重介绍了李天岩、约克、梅、斯卡夫、菲根鲍姆、斯梅尔等学者近年来所做的贡献。这些学者全都是富个性的人物,他们的共同特点是基础深厚,兴趣广泛,对新发展富有远见。他们不是死守一块阵地,而是为开拓不惜改弦更张,一旦认准了目标,他们锲而不舍,务克全功,决不半途而废。这一切,都是科研工作者可贵的品格,都是新科学、新时代探索者的可贵品格。 -
数学的本性[美] 莫里兹(Moritz.R.E.) 著,朱剑英 编. -
唐吉诃德+西西弗斯刘培杰数学工作室本丛书为您介绍了数百种数学图书的内容简介,并奉上名家及编辑为每本图书所作的序、跋等。本丛书旨在为读者开阔视野,在万千数学图书中精准找到所求著作,其中不乏精品书、畅销书。本书为其中的吉光片羽集。本丛书适合数学爱好者参考阅读。
